

EC200U Series Hardware Design

LTE Standard Module Series

Version: 1.0

Date: 2021-11-05

Status: Released

At Quectel, our aim is to provide timely and comprehensive services to our customers. If you require any assistance, please contact our headquarters:

Quectel Wireless Solutions Co., Ltd.

Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai 200233, China Tel: +86 21 5108 6236 Email: info@guectel.com

Or our local offices. For more information, please visit: http://www.guectel.com/support/sales.htm.

For technical support, or to report documentation errors, please visit: <u>http://www.quectel.com/support/technical.htm</u>. Or email us at: <u>support@quectel.com</u>.

Legal Notices

We offer information as a service to you. The provided information is based on your requirements and we make every effort to ensure its quality. You agree that you are responsible for using independent analysis and evaluation in designing intended products, and we provide reference designs for illustrative purposes only. Before using any hardware, software or service guided by this document, please read this notice carefully. Even though we employ commercially reasonable efforts to provide the best possible experience, you hereby acknowledge and agree that this document and related services hereunder are provided to you on an "as available" basis. We may revise or restate this document from time to time at our sole discretion without any prior notice to you.

Use and Disclosure Restrictions

License Agreements

Documents and information provided by us shall be kept confidential, unless specific permission is granted. They shall not be accessed or used for any purpose except as expressly provided herein.

Copyright

Our and third-party products hereunder may contain copyrighted material. Such copyrighted material shall not be copied, reproduced, distributed, merged, published, translated, or modified without prior written consent. We and the third party have exclusive rights over copyrighted material. No license shall be granted or conveyed under any patents, copyrights, trademarks, or service mark rights. To avoid ambiguities, purchasing in any form cannot be deemed as granting a license other than the normal non-exclusive, royalty-free license to use the material. We reserve the right to take legal action for noncompliance with abovementioned requirements, unauthorized use, or other illegal or malicious use of the material.

Trademarks

Except as otherwise set forth herein, nothing in this document shall be construed as conferring any rights to use any trademark, trade name or name, abbreviation, or counterfeit product thereof owned by Quectel or any third party in advertising, publicity, or other aspects.

Third-Party Rights

This document may refer to hardware, software and/or documentation owned by one or more third parties ("third-party materials"). Use of such third-party materials shall be governed by all restrictions and obligations applicable thereto.

We make no warranty or representation, either express or implied, regarding the third-party materials, including but not limited to any implied or statutory, warranties of merchantability or fitness for a particular purpose, quiet enjoyment, system integration, information accuracy, and non-infringement of any third-party intellectual property rights with regard to the licensed technology or use thereof. Nothing herein constitutes a representation or warranty by us to either develop, enhance, modify, distribute, market, sell, offer for sale, or otherwise maintain production of any our products or any other hardware, software, device, tool, information, or product. We moreover disclaim any and all warranties arising from the course of dealing or usage of trade.

Disclaimer

- a) We acknowledge no liability for any injury or damage arising from the reliance upon the information.
- b) We shall bear no liability resulting from any inaccuracies or omissions, or from the use of the information contained herein.
- c) While we have made every effort to ensure that the functions and features under development are free from errors, it is possible that they could contain errors, inaccuracies, and omissions. Unless otherwise provided by valid agreement, we make no warranties of any kind, either implied or express, and exclude all liability for any loss or damage suffered in connection with the use of features and functions under development, to the maximum extent permitted by law, regardless of whether such loss or damage may have been foreseeable.
- d) We are not responsible for the accessibility, safety, accuracy, availability, legality, or completeness of information, advertising, commercial offers, products, services, and materials on third-party websites and third-party resources.

Copyright © Quectel Wireless Solutions Co., Ltd. 2021. All rights reserved.

Safety Information

The following safety precautions must be observed during all phases of operation, such as usage, service or repair of any cellular terminal or mobile incorporating the module. Manufacturers of the cellular terminal should send the following safety information to users and operating personnel, and incorporate these guidelines into all manuals supplied with the product. If not so, Quectel assumes no liability for customers' failure to comply with these precautions.

	Full attention must be given to driving at all times in order to reduce the risk of an accident. Using a mobile while driving (even with a handsfree kit) causes distraction and can lead to an accident. Please comply with laws and regulations restricting the use of wireless devices while driving.
	Switch off the cellular terminal or mobile before boarding an aircraft. The operation of wireless appliances in an aircraft is forbidden to prevent interference with communication systems. If the device offers an Airplane Mode, then it should be enabled prior to boarding an aircraft. Please consult the airline staff for more restrictions on the use of wireless devices on boarding the aircraft.
•	Wireless devices may cause interference on sensitive medical equipment, so please be aware of the restrictions on the use of wireless devices when in hospitals, clinics or other healthcare facilities.
SOS	Cellular terminals or mobiles operating over radio signals and cellular network cannot be guaranteed to connect in all possible conditions (for example, with unpaid bills or with an invalid (U)SIM card). When emergent help is needed in such conditions, please remember using emergency call. In order to make or receive a call, the cellular terminal or mobile must be switched on in a service area with adequate cellular signal strength.
WW	The cellular terminal or mobile contains a transmitter and receiver. When it is ON, it receives and transmits radio frequency signals. RF interference can occur if it is used close to TV set, radio, computer or other electric equipment.
Site	In locations with potentially explosive atmospheres, obey all posted signs to turn off wireless devices such as your phone or other cellular terminals. Areas with potentially explosive atmospheres include fuelling areas, below decks on boats,

fuel or chemical transfer or storage facilities, areas where the air contains

chemicals or particles such as grain, dust or metal powders, etc.

About the Document

Revision History

Version	Date	Author	Description
-	2021-10-08	Kyle CHEN/ Nathan LIU	Creation of the document
1.0	2021-11-05	Kyle CHEN/ Nathan LIU	First official release

Contents

Saf	ety Information	3
Abo	out the Document	4
Cor	ntents	5
Tab	ble Index	7
Fig	ure Index	9
1	Introduction	.11
	1.1. Special Marks	
2	Product Overview	.12
	2.1. General Description	.12
	2.2. Key Features	.13
	2.3. Functional Diagram	.15
	2.4. EVB	.16
3	Application Interfaces	.17
	3.1. General Description	. 17
	3.2. Pin Assignment	.18
	3.3. Pin Description	.19
	3.4. Operating Modes	
	3.5. Power Saving	
	3.5.1. Sleep Mode	
	3.5.1.1. UART Application	
	3.5.1.2. USB Application with USB Remote Wakeup Function*	
	3.5.1.3. USB Application with USB Suspend/Resume and MAIN_RI Function*	
	3.5.1.4. USB Application	
	3.5.2. Airplane Mode	
	3.6. Power Supply	
	3.6.1. Power Supply Pins	
	3.6.2. Voltage Stability Requirements	
	3.6.3. Reference Design for Power Supply3.6.4. Monitor the Power Supply	
	3.7. Turn on/Turn off/Reset	
	3.7.1. Turn on Module with PWRKEY	
	3.7.2. Turn off Module	
	3.7.2.1. Turn off Module with PWRKEY	
	3.7.2.2. Turn off Module with AT Command	
	3.7.3. Reset the Module	
	3.8. (U)SIM Interfaces	
	3.9. USB Interface	
	3.10. UART Interfaces	
	3.11. SPI Interface	
	3.12. I2C Interfaces	
	3.13. PCM Interface	

	3.14.	Analog Audio Interfaces	.49
	3.1	14.1. Notes on Audio Interface Design	50
	3.1	14.2. Microphone Interface Circuit	.51
	3.1	14.3. Loudspeaker Interface Circuit	.52
	3.15.	LCD Interface	.52
	3.16.	Matrix Keyboard Interface	53
	3.17.	SD Card Interface	.54
	3.18.	WLAN Application Interface*	.55
	3.19.	ADC Interfaces	56
	3.20.	Network Status Indication	.57
	3.21.	STATUS	.58
	3.22.	Behaviors of MAIN_RI	.59
	3.23.	USB_BOOT Interface	.60
4	Antenr	na Interfaces	62
	4.1.	Main Antenna and Wi-Fi Scan/Bluetooth Antenna Interfaces	62
	4.1	1.1. Pin Definition	62
	4.1	1.2. Operating Frequency	63
	4.1	1.3. Reference Design of RF Antenna Interfaces	64
	4.2.	GNSS Antenna Interface	65
	4.3.	Reference Design of RF Layout	
	4.4.	Antenna Installation	68
	4.4	4.1. Antenna Requirement	.68
		4.2. Recommended RF Connector for Antenna Installation	
5	Electri	ical Characteristics, Radio and Reliability	.71
	5.1.	Absolute Maximum Ratings	.71
	5.2.	Power Supply Ratings	72
	5.3.	Operating and Storage Temperatures	72
	5.4.	Power Consumption	.73
	5.5.	Tx Power	.78
	5.6.	Rx Sensitivity	79
	5.7.	ESD	.81
6	Mecha	anical Information	82
	6.1.	Mechanical Dimensions	.82
	6.2.	Recommended Footprint	.84
	6.3.	Top and Bottom Views	85
7	Storag	ge, Manufacturing & Packaging	86
	7.1.	Storage Conditions	
	7.2.	Manufacturing and Soldering	.87
	7.3.	Packaging Specifications	88
	7.3	3.1. Carrier Tape	.89
	7.3	3.2. Plastic Reel	.89
		3.3. Packaging Process	
8	Appen	ndix References	.91

Table Index

11
12
12
13
19
19
29
34
36
40
41
42
44
45
46
46
48
48
49
50
52
53
54
55
57
57
57
58
58
60
60
62
63
63
65
65
68
71
72
73
73
1 1 1 1 1 2 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5

Table 42: EC200U-EU Current Consumption	75
Table 43: EC200U-CN RF Output Power	78
Table 44: EC200U-EU RF Output Power	79
Table 45: EC200U-CN Conducted RF Receiving Sensitivity	79
Table 46: EC200U-EU Conducted RF Receiving Sensitivity	80
Table 47: Electrostatics Discharge Characteristics (25 °C, 45 % Relative Humidity)	81
Table 48: Recommended Thermal Profile Parameters	88
Table 49: Carrier Tape Dimension Table (Unit: mm)	89
Table 50: Plastic Reel Dimension Table (Unit: mm)	
Table 51: Related Documents	91
Table 52: Terms and Abbreviations	91

Figure Index

Figure 1: Functional Diagram	. 16
Figure 2: Pin Assignment (Top View)	. 18
Figure 3: Sleep Mode Application via UART	. 30
Figure 4: Sleep Mode Application with USB Remote Wakeup	. 31
Figure 5: Sleep Mode Application with MAIN_RI	. 32
Figure 6: Sleep Mode Application without Suspended Function	.33
Figure 7: Power Supply Limits during Burst Transmission	. 34
Figure 8: Star Configuration Routing of Power Supply	. 35
Figure 9: Reference Circuit of Power Supply	.36
Figure 10: Turn on Module by Using Driving Circuit	. 37
Figure 11: Turn on Module by Using Button	. 37
Figure 12: Power-up Timing	. 38
Figure 13: Power-down Timing	. 39
Figure 14: Reference Circuit of RESET_N by Using Driving Circuit	. 40
Figure 15: Reference Circuit of RESET_N by Using Button	. 41
Figure 16: Timing of Resetting Module	. 41
Figure 17: Reference Circuit of (U)SIM Interface with an 8-Pin (U)SIM Card Connector	. 42
Figure 18: Reference Circuit of (U)SIM Interface with a 6-Pin (U)SIM Card Connector	43
Figure 19: Reference Circuit of USB Application	. 44
Figure 20: Reference Circuit with Translator Chip	. 46
Figure 21: Reference Circuit with Transistor Circuit	. 47
Figure 22: Reference Circuit of I2C and PCM Application with External Codec Chip	. 49
Figure 23: Reference Circuit of Microphone Interface	.51
Figure 24: Reference Circuit of Loudspeaker Interface	.52
Figure 25: Reference Circuit of SD Card Interface	.54
Figure 26: Reference Circuit of Network Indicator	.58
Figure 27: Reference Circuit of STATUS	.59
Figure 28: Reference Circuit of USB_BOOT Interface	. 61
Figure 29: Reference Circuit of RF Antenna Interfaces	.64
Figure 30: Reference Circuit of GNSS Antenna	65
Figure 31: Microstrip Design on a 2-layer PCB	. 66
Figure 32: Coplanar Waveguide Design on a 2-layer PCB	. 66
Figure 33: Coplanar Waveguide Design on a 4-layer PCB (Layer 3 as Reference Ground)	. 67
Figure 34: Coplanar Waveguide Design on a 4-layer PCB (Layer 4 as Reference Ground)	. 67
Figure 35: Dimensions of U.FL-R-SMT Connector (Unit: mm)	. 69
Figure 36: Mechanicals of U.FL-LP Connectors	. 69
Figure 37: Space Factor of Mated Connector (Unit: mm)	.70
Figure 38: Module Top and Side Dimensions	. 82
Figure 39: Module Bottom Dimensions	02
5	. 05
Figure 40: Recommended Footprint (Top View)	

Figure 42: Reflow Soldering Thermal Profile	87
Figure 43: Carrier Tape Dimension Drawing	89
Figure 44: Plastic Reel Dimension Drawing	89
Figure 45: Packaging Process	90

1 Introduction

This document defines the EC200U series module and describes its air interface and hardware interfaces which are connected with your applications.

This document can help you quickly understand module interface specifications, electrical and mechanical details, as well as other related information of EC200U series module. To facilitate its application in different fields, relevant reference design is also provided for customers' reference. Associated with application note and user guide, you can use EC200U series module to design and set up wireless applications easily.

This document is applicable to the following variants:

- EC200U-CN
- EC200U-EU

1.1. Special Marks

Table 1: Special Marks

Mark	Definition
*	When an asterisk (*) is used after a function, feature, interface, pin name, AT command, or argument, it indicates that the function, feature, interface, pin name, AT command, or argument is under development and currently not supported, unless otherwise specified.
[]	Brackets ([]) used after a pin enclosing a range of numbers indicate all pins of the same type. For example, SDIO1_DATA[0:3] refers to all four SDIO1_DATA pins: SDIO1_DATA0, SDIO1_DATA1, SDIO1_DATA2 and SDIO1_DATA3.

2 Product Overview

2.1. General Description

EC200U series is a wireless communication module, which supports LTE-FDD, LTE-TDD, GSM/GPRS network data connection. It provides voice function for your special applications and also supports GNSS. The following table shows the frequency bands of the module.

Table 2: Frequency Bands of EC200U-CN Module

Network Mode	Frequency Band
LTE-FDD	B1/B3/B5/B8
LTE-TDD	B34/B38/B39/B40/B41
GSM ¹	900/1800 MHz
GNSS ²	GPS, GLONASS, BeiDou, Galileo, QZSS
Bluetooth and Wi-Fi Scan ³	Support

Table 3: Frequency Bands of EC200U-EU Module

Network Mode	Frequency Band
LTE-FDD	B1/B3/B5/B7/B8/B20/B28
LTE-TDD	B38/B40/B41
GSM	850/900/1800/1900 MHz

¹ GSM is optional.

² GNSS function is optional.

³ EC200U series supports Bluetooth and Wi-Fi Scan functions. Due to the shared antenna interface, the two functions cannot be used at the same time; Bluetooth and Wi-Fi Scan functions are optional (supported or not supported simultaneously), please contact Quectel Technical Supports for details.

GNSS ²	GPS, GLONASS, BeiDou, Galileo, QZSS
CINCO	

Support

Bluetooth and Wi-Fi Scan ³

With a compact profile of 28.0 mm \times 31.0 mm \times 2.4 mm, EC200U series can meet almost all requirements for M2M applications such as automotive, metering, tracking system, security, router,

EC200U series is an SMD type module which can be embedded into applications through 144 pins, including 80 LCC pins and 64 LGA pins.

2.2. Key Features

Feature	Details
Power Supply	 Supply voltage: 3.3–4.3 V
	 Typical supply voltage: 3.8 V
	 Class 4 for EGSM850
	 Class 4 for EGSM900
Transmitting Power	 Class 1 for DCS1800
Hansminning Fower	 Class 1 for PCS1900
	 Class 3 for LTE-FDD bands
	Class 3 for LTE-TDD bands
	Supports Cat 1 FDD and TDD
LTE Features	 Supports 1.4/3/5/10/15/20 MHz RF bandwidth
LIE realures	 FDD: Max. 10 Mbps (DL), Max. 5 Mbps (UL)
	• TDD: Max. 8.96 Mbps (DL), Max. 3.1 Mbps (UL)
	GPRS:
	 Supports GPRS multi-slot class 12
GSM Features	 Coding scheme: CS-1, CS-2, CS-3 and CS-4
	 Max. 85.6 kbps (DL)/Max. 85.6 kbps (UL)
Internet Direte est	Supports TCP/UDP/PPP/NTP/NITZ/FTP/HTTP/PING/CMUX/HTTPS/
Internet Protocol	FTPS/SSL/FILE/MQTT/MMS protocols
Features	 Supports PAP and CHAP for PPP connections
	Text and PDU mode
CMC	 Point to point MO and MT
SMS	SMS cell broadcast
	• SMS storage: Stored in (U) SIM card and ME, stored in ME by default

Table 4: Key Features of EC200U Series Module

wireless POS, mobile computing device, PDA phone, tablet PC, etc.

(U)SIM Interface	 Supports USIM/SIM card: 1.8/3.0 V Supports DSDS
Audio Features	 Supports one analog audio input and one analog audio output GSM: HR/FR/EFR/AMR/AMR-WB
	 Supports echo cancellation and noise suppression
	 Compliant with USB 2.0 specification (slave mode only); the data transfer rate can reach up to 480 Mbps
USB Interface	 Used for AT command communication, data transmission, software debugging, firmware upgrade
	• Supports USB serial drivers for Windows 7/8/8.1/10, Linux 2.6–5.12,
	Android 4.x–11.x, etc.
	Main UART:
	 Used for AT command communication and data transmission
	 Baud rates reach up to 921600 bps; 115200 bps by default
	 Support MAIN_RTS and MAIN_CTS hardware flow control
UART Interfaces	Debug UART:
	 Used for Linux console and log output
	 921600 bps baud rates
	 Can only be used as a debugging UART, not a general UART
	Auxiliary UART
I2C Interfaces	Two I2C interfaces
SPI Interface	SPI interface only supports master mode
SD Card Interface	SD 2.0 protocol compliant
WLAN Application Interface*	Supports SDIO 1.1 interface for WLAN function
LCD Interface	LCD interface supporting SPI mode
Matrix keyboard Interfaces	• Support 4 × 4 matrix keyboard
ADC Interfaces	Three ADC interfaces
USB_BOOT Interface	Forced download interface
AT Commands	 Compliant with 3GPP TS 27.007, 3GPP TS 27.005 and Quectel enhanced AT commands
Network Indication	NET_MODE and NET_STATUS to indicate network connectivity status
Antenna Interfaces	 Main antenna interface (ANT_MAIN), Wi-Fi Scan/Bluetooth antenna interface (ANT_BT/WIFI_SCAN) and GNSS ⁴ antenna interface (ANT_GNSS)

⁴ GNSS function is optional.

	•	50 Ω impedance
Location	•	Supports Wi-Fi Scan/GNSS ⁴
Physical Characteristics	٠	Size: (28.0 ±0.15) mm × (31.0 ±0.15) mm × (2.4 ±0.2) mm
	•	Weight: approx. 4.1 g
	•	Operating temperature range: -35 °C to +75 °C 5
Temperature Ranges	•	Extended temperature range: -40 °C to +85 °C 6
	•	Storage temperature range: -40 °C to +90 °C
Firmware Upgrade	٠	USB interface or FOTA
RoHS	•	All hardware components are fully compliant with EU RoHS directive

2.3. Functional Diagram

The following figure shows a block diagram of EC200U series and illustrates the major functional parts.

- Power management
- Baseband
- Flash
- Radio frequency
- Peripheral interfaces

⁵ Within operating temperature range, the module is 3GPP compliant.

⁶ Within the extended temperature range, the module remains the ability to establish and maintain functions such as voice, SMS, data transmission, etc., without any unrecoverable malfunction. Radio spectrum and radio network are not influenced, while one or more specifications, such as Pout, may exceed the specified tolerances of 3GPP. When the temperature returns to the operating temperature range, the module meets 3GPP specifications again.

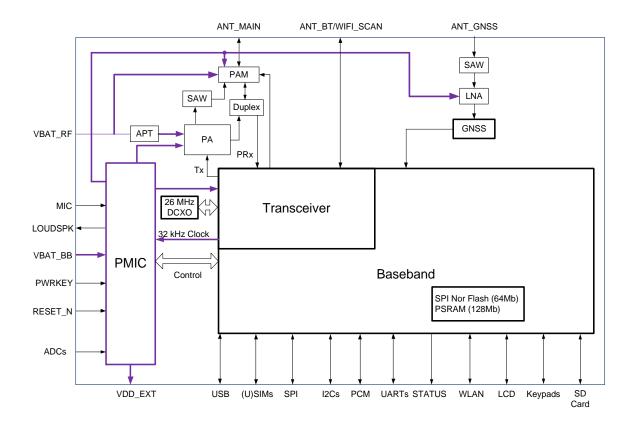


Figure 1: Functional Diagram

2.4. EVB

In order to help customers to develop applications with EC200U series, Quectel provides an evaluation board (UMTS & LTE EVB), USB to RS-232 converter cable, earphone, antennas and other peripherals to control or test the module. For more details, please refer to *document [1]*.

3 Application Interfaces

3.1. General Description

EC200U series is equipped with 80 LCC pins plus 64 LGA pins that can be connected to cellular application platform. The subsequent chapters will provide detailed descriptions of the following interfaces.

- Power supply
- (U)SIM interfaces
- USB interface
- UART interfaces
- SPI interface
- PCM and I2C interfaces
- Analog audio interfaces
- LCD interface
- Matrix keyboard interface
- SD card interface
- WLAN application interface*
- ADC interfaces
- Status indications
- USB_BOOT interface

3.2. Pin Assignment

The following figure shows the pin assignment of EC200U series module.

1 WAKEUP_IN	113 REYOUTZ 114 REYOUT3	70 USB_DM USB_VBUS 72 GND	MAIN_TXD 68 MAIN_RXD 058_DP	65 MAIN_RTS 66 MAIN_DTR	62 MAIN_RI 63 MAIN_DCD 64 MAIN_CTS	VBAT BB	RESERVED	54 GND
2 AP_READY	129 117		-	-	_		-	53 _{GND}
3 SLEEP_IND 4 W_DISABLE#	130 118	108	103	99	95	90	85	52 GND 51 GND
W_DISABLE#	131 119							GND 50 GND
6 NET_STATUS	союс. ратан 132 союс. ратан 120 со. ляти							49 ANT_MAIN
7 VDD_EXT 141 I2C2_SCL		100	104	100	96	91	86	48 GND 144 GRFC2
12C2_SCL 142 12C2_SDA	133 121 soloz_cux 122	_	-	82 79 RESERVED KEVINZ	76 GND 73 LOLDSPK		-	GRFC2 143 GRFC1
8 GND	134 SDIG2_CMD 122	110	105	83 80 KEYOUTO KEYING	77 74 MRC_N 74 LDUDSPK	92	87	47 ANT_GNSS
9 GND 10 USIM_GND	135 123 VILAN , VILAN			KEYOUTI RESERVED	78 75 KEVINI MC_P			46 GND 45 ADCD
USIM_GND 11 DBG_RXD	136 124 WLANLEN 124							ADC0 44 ADC1
12 DBG_TXD	137 ALIX, RKD 125 LCD_SNO	111	106	101	97	93	88	43 ADC2
13 USIM_DET	138 126 AKK_TRD 126							42 I2C_SDA
14 USIM_VDD 15 USIM_DATA	139 127 BT_EN 127	112	107	102	98	94	89	41 I2C_SCL 40 SPI_CLK
16 USIM_CLK	140 <mark>128</mark>							39 spi_miso
17 USIM_RST								38 spi_mosi
18 RESERVED	115 USB_BOOT 116 RESERVED	21 PWRKEY 20 RESET_N GND	PCM_DIN 23 SD_DET SD_DET GND	есм_зунс 25 Рсм_ролт 24	29 SDIO1_DATA2 28 SDIO1_DATA3 SDIO1_DATA3 PCM_CLK	SDIO1_CLK SDIO1_DATA0 SDIO1_DATA1	36 SENT ANT STRVIET SCAN P SCAN P SCAN P SCAN P	37 SPI_CS
	Power F	Pins	GND Pi	ns	Signal F	Pins	RESERVED Pir	IS

Figure 2: Pin Assignment (Top View)

NOTE

- 1. USB_BOOT and KEYIN1 cannot be pulled up before the module's successful startup.
- 2. Please keep all RESERVED and unused pins unconnected, and all GND pins are connected to the ground.
- 3. Pin 85–112 should be connected to the ground.

3.3. Pin Description

The following tables show the pin definition of EC200U series module.

Table 5: I/O Parameters Definition

Туре	Description
AI	Analog Input
AO	Analog Output
AIO	Analog Input/Output
DI	Digital Input
DO	Digital Output
DIO	Digital Input/Output
OD	Open Drain
PI	Power Input
PO	Power Output

Table 6: Pin Description

Power Supply					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
VBAT_BB	59, 60	PI	Power supply for module's baseband part and RF part	Vmax = 4.3 V Vmin = 3.3 V Vnom = 3.8 V	It must be provided with sufficient current up to 1.5 A.
VBAT_RF	57, 58	PI	Power supply for module's RF part	Vmax = 4.3 V Vmin = 3.3 V Vnom = 3.8 V	It must be provided with sufficient current up to 2 A.
GND	8, 9, 19,	22, 36,	46, 48, 50–54, 56, 72	, 76, 85–112	
Module Output	Power				
Pin Name	Pin No.	I/O	Description	DC Characteristics	s Comment

VDD_EXT	7	PO	Provide 1.8 V for external circuit	Vnom = 1.8 V I _o max = 50 mA	Power supply for external GPIO's pull-up circuits. Add 2.2 µF capacitor if used. If unused, keep it open.
Turn on/off					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
PWRKEY	21	DI	Turn on/off the module	V _{IL} max = 0.5 V	VBAT power domain
RESET_N	20	DI	Reset the module	V_{IL} max = 0.5 V	VBAT power domain. If unused, keep it open. Active low.
Status Indication	on				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
STATUS	61	DO	Indicate module's operating status		1.8 V power domain. If unused, keep it open.
NET_MODE	5	DO	Indicate the module's network activity status	V _{OH} min = 1.35 V V _{OL} max = 0.45 V	1.8 V power domain. If unused, keep it open.
NET_STATUS	6	DO	Indicate the module's network registration mode	V _{OH} min = 1.35 V V _{OL} max = 0.45 V	1.8 V power domain. If unused, keep it open.
USB Interface					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
USB_VBUS	71	AI	Used for USB detection	Vmax = 5.25 V Vmin = 3.5 V Vnom = 5.0 V	Typical: 5.0 V If unused, keep it open.
USB_DP	69	AIO	USB differential data bus (+)		Require differential impedance of 90 Ω. USB 2.0 compliant. If unused, keep it open.
USB_DM	70	AIO	USB differential data bus (-)		Require differential impedance of 90 Ω. USB 2.0 compliant. If

unused, keep it open.

(U)SIM Interfac	е				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
USIM_GND	10		(U)SIM1 card GND		Connect to the GND of (U)SIM card connector.
				I_0 max = 50 mA	
USIM_VDD	14	РО	(U)SIM1 card power supply	For 1.8 V (U)SIM: Vmax = 1.9 V Vmin = 1.7 V	Either 1.8 V or 3.0 V can be recognized by the module
				For 3.0 V (U)SIM: Vmax = 3.05 V Vmin = 2.7 V	automatically.
USIM_DATA	15	DIO	(U)SIM1 card data	For 1.8 V (U)SIM: V _{IL} max = 0.6 V V _{IH} min = 1.2 V V _{OL} max = 0.45 V V _{OH} min = 1.35 V	
	13	DIO		For 3.0 V (U)SIM: V _{IL} max =1.0 V V _{IH} min = 1.95 V V _{OL} max = 0.45 V V _{OH} min = 2.55 V	
USIM_CLK	16	DO	(U)SIM1 card clock	For 1.8 V (U)SIM: V _{OL} max = 0.45 V V _{OH} min = 1.35 V For 3.0 V (U)SIM: V _{OL} max = 0.45 V	
				$V_{OH}min = 2.55 V$ For 1.8 V (U)SIM: $V_{OL}max = 0.45 V$ $V_{OH}min = 1.35 V$	
USIM_RST	17	DO	(U)SIM1 card reset	V _{OH} min = 1.35 V For 3.0 V (U)SIM: V _{OL} max = 0.45 V V _{OH} min = 2.55 V	
USIM_DET	13	DI	(U)SIM card	$V_{IL}min = -0.3 V$	1.8 V power domain.

			hot-plug detect	V _{IL} max = 0.6 V V _{IH} min = 1.26 V V _{IH} max = 2.0 V	lf unused, keep it open.
USIM2_VDD	128	PO	(U)SIM2 card power supply	I _o max = 50 mA For 1.8 V (U)SIM: Vmax = 1.9 V Vmin = 1.7 V For 3.0 V (U)SIM: Vmax = 3.05 V Vmin = 2.7 V	Either 1.8 V or 3.0 V can be recognized by the module automatically.
AP_READY	2	DIO	(U)SIM card data	For 1.8 V (U)SIM: $V_{IL}max = 0.6 V$ $V_{IH}min = 1.26 V$ $V_{OL}max = 0.45 V$ $V_{OH}min = 1.35 V$ For 3.0 V (U)SIM: $V_{IL}max = 1.0 V$ $V_{IH}min = 1.95 V$ $V_{OL}max = 0.45 V$ $V_{OH}min = 2.55 V$	The (U)SIM2 function is optional. If the firmware version of the module supports the function of the (U)SIM2 card, the
WAKEUP_IN	1	DO	(U)SIM2 card clock	For 1.8 V (U)SIM: V _{OL} max = 0.45 V V _{OH} min = 1.35 V For 3.0 V (U)SIM: V _{OL} max = 0.45 V V _{OH} min = 2.55 V	relevant functions of the (U)SIM2 card can be realized by multiplexing AP_READY, WAKEUP_IN, SLEEP_IND, and
SLEEP_IND	3	DI	(U)SIM2 card hot-plug detect	$V_{IL}min = -0.3 V$	W_DISABLE#. For details, please
W_DISABLE#	4	DO	(U)SIM2 card reset	For 1.8 V (U)SIM: V _{OL} max = 0.45 V V _{OH} min = 1.35 V For 3.0 V (U)SIM: V _{OL} max = 0.45 V V _{OH} min = 2.55 V	consult Quectel Technical Supports.
Main UART Inte	erface				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment

MAIN_RI	62	DO	Main UART ring indication	V _{OL} max = 0.45 V V _{OH} min = 1.35 V	1.8 V power domain.
MAIN_DCD	63	DO	Main UART data carrier detect	V _{OL} max = 0.45 V V _{OH} min = 1.35 V	If unused, keep it open.
MAIN_CTS	64	DO	DTE clear to send signal from DCE	V _{OL} max = 0.45 V V _{OH} min = 1.35 V	Connect to DTE's CTS. 1.8 V power domain. If unused, keep it open.
MAIN_RTS	65	DI	DTE request to send signal to DCE	$V_{IL}min = -0.3 V$ $V_{IL}max = 0.6 V$ $V_{IH}min = 1.26 V$ $V_{IH}max = 2.0 V$	Connect to DTE's RTS. 1.8 V power domain. If unused, keep it open.
MAIN_DTR	66	DI	Main UART data terminal ready	$V_{IL}min = -0.3 V$ $V_{IL}max = 0.6 V$ $V_{IH}min = 1.26 V$ $V_{IH}max = 2.0 V$	1.8 V power domain.Pull-up by default.Low level wakes upthe module.If unused, keep itopen.
MAIN_TXD	67	DO	Main UART transmit	V _{OL} max = 0.45 V V _{OH} min = 1.35 V	
MAIN_RXD	68	DI	Main UART receive	$V_{IL}min = -0.3 V$ $V_{IL}max = 0.6 V$ $V_{IH}min = 1.26 V$ $V_{IH}max = 2.0 V$	1.8 V power domain. If unused, keep it open.
Debug UART I	nterface				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
DBG_TXD	12	DO	Debug UART transmit	$V_{OL}max = 0.45 V$ $V_{OH}min = 1.35 V$	1.8 V power domain. If unused, keep it open.
DBG_RXD	11	DI	Debug UART receive	V _{IL} min = -0.3 V V _{IL} max = 0.6 V V _{IH} min = 1.26 V V _{IH} max = 2.0 V	1.8 V power domain. If unused, keep it open.
Auxiliary UAR	T Interface				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
AUX_RXD	137	DI	Auxiliary UART receive	V _{IL} min = -0.3 V V _{IL} max = 0.6 V V _{IH} min = 1.26 V	1.8 V power domain. If unused, keep it open.

				$V_{IH}max = 2.0 V$	
AUX_TXD	138	DO	Auxiliary UART transmit	V _{OL} max = 0.45 V V _{OH} min = 1.35 V	1.8 V power domain. If unused, keep it open.
ADC Interfaces					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
ADC2	43	AI	General-purpose ADC interface	Voltage range: 0–VBAT_BB	Use 1 k Ω resistor in series.
ADC1	44	AI	General-purpose ADC interface	Voltage range: 0–VBAT_BB	If unused, keep it open.
ADC0	45	AI	General-purpose ADC interface	Voltage range: 0–VBAT_BB	The external resistor should be less than 100 kΩ when the voltage divider resistor applies.
Analog Audio II	nterface				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
LOUDSPK_P	73	AO	Loudspeaker differential output (+)		
LOUDSPK_N	74	AO	Loudspeaker differential output (-)		If unused, keep them
MIC_P	75	AI	Microphone analog input (+)		open.
MIC_N	77	AI	Microphone analog input (-)		
I2C Interface					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
I2C_SCL	41	OD	I2C serial clock		Require external
I2C_SDA	42	OD	I2C serial data	·	pull-up to 1.8 V if
I2C2_SCL			I2C serial clock		used. If unused, keep it
1202_00L	141	OD	120 Senai Clock		
12C2_SCL	141 142	OD OD	I2C serial data		open.

PCM_DIN	24	DI	PCM data input	$V_{IL}min = -0.3 V$ $V_{IL}max = 0.6 V$ $V_{IH}min = 1.26 V$ $V_{IH}max = 2.0 V$	1.8 V power domain. If unused, keep it
PCM_DOUT	25	DO	PCM data output	V _{OL} max = 0.45 V V _{OH} min = 1.35 V	open.
PCM_SYNC	26	DI	PCM data frame sync	$V_{IL}min = -0.3 V$ $V_{IL}max = 0.6 V$ $V_{IH}min = 1.26 V$ $V_{IH}max = 2.0 V$	1.8 V power domain. If unused, keep it open. The PCM function only
PCM_CLK	27	DI	PCM clock	V _{IL} min = -0.3 V V _{IL} max = 0.6 V V _{IH} min = 1.26 V V _{IH} max = 2.0 V	supports slave mode, not master mode.
SPI Interface					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
SPI_CS	37	DO	SPI chip select	V _{OL} max = 0.45 V V _{OH} min = 1.35 V	If you use a module
SPI_MOSI	38	DO	SPI master mode output	V _{OL} max = 0.45 V V _{OH} min = 1.35 V	 model that supports GNSS function, the SPI function of Pin
SPI_MISO	39	DI	SPI master mode input		37–40 cannot be used and needs to
SPI_CLK	40	DO	SPI clock	V _{OL} max = 0.45 V V _{OH} min = 1.35 V	be left unconnected.
SPI_CLK	40	DO	SPI clock		be left unconnected.
_	40 Pin No.	DO I/O	SPI clock Description		be left unconnected. Comment
LCD Interface				V _{OH} min = 1.35 V	
LCD Interface Pin Name	Pin No.	I/O	Description LCD frame	$V_{OH}min = 1.35 V$ DC Characteristics $V_{IL}min = -0.3 V$ $V_{IL}max = 0.6 V$ $V_{IH}min = 1.26 V$	
LCD Interface Pin Name LCD_FMARK	Pin No. 119	I/O DI	Description LCD frame synchronization	$V_{OH}min = 1.35 V$ $DC Characteristics$ $V_{IL}min = -0.3 V$ $V_{IL}max = 0.6 V$ $V_{IH}min = 1.26 V$ $V_{IH}max = 2.0 V$ $V_{OL}max = 0.45 V$	Comment
LCD Interface Pin Name LCD_FMARK LCD_RSTB	Pin No. 119 120	I/O DI	DescriptionLCD frame synchronizationLCD reset	$V_{OH}min = 1.35 V$ $DC Characteristics$ $V_{IL}min = -0.3 V$ $V_{IL}max = 0.6 V$ $V_{IH}min = 1.26 V$ $V_{IH}max = 2.0 V$ $V_{OL}max = 0.45 V$	Comment - 1.8 V power domain. If unused, keep them
LCD Interface Pin Name LCD_FMARK LCD_RSTB LCD_SEL	Pin No. 119 120 121	I/O DI DO	DescriptionLCD frame synchronizationLCD resetReserved	$V_{OH}min = 1.35 V$ DC Characteristics $V_{IL}min = -0.3 V$ $V_{IL}max = 0.6 V$ $V_{IH}min = 1.26 V$ $V_{IH}max = 2.0 V$ $V_{OL}max = 0.45 V$ $V_{OH}min = 1.35 V$ - $V_{OL}max = 0.45 V$	Comment - 1.8 V power domain.
LCD Interface Pin Name LCD_FMARK LCD_RSTB LCD_SEL LCD_CS	Pin No. 119 120 121 122	I/O DI DO - DO	DescriptionLCD frame synchronizationLCD resetReservedLCD chip select	$V_{OH}min = 1.35 V$ $DC Characteristics$ $V_{IL}min = -0.3 V$ $V_{IL}max = 0.6 V$ $V_{IH}min = 1.26 V$ $V_{IH}max = 2.0 V$ $V_{OL}max = 0.45 V$ $V_{OH}min = 1.35 V$ $-$ $V_{OL}max = 0.45 V$ $V_{OH}min = 1.35 V$	Comment - 1.8 V power domain. If unused, keep them
LCD Interface Pin Name LCD_FMARK LCD_RSTB LCD_SEL LCD_CS LCD_CLK	Pin No. 119 120 121 122 123	 I/O DI DO - DO DO 	Description LCD frame synchronization LCD reset Reserved LCD chip select LCD clock LCD register	$V_{OH}min = 1.35 V$ $DC Characteristics$ $V_{IL}min = -0.3 V$ $V_{IL}max = 0.6 V$ $V_{IH}min = 1.26 V$ $V_{IH}max = 2.0 V$ $V_{OL}max = 0.45 V$ $V_{OH}min = 1.35 V$ $-$ $V_{OL}max = 0.45 V$	Comment - 1.8 V power domain. If unused, keep them

			Backlight adjustment	Configurable current	current sink method, and connected to the backlight cathode, the brightness can be adjusted with current control.
Matrix Keyboa	ard Interface	•			
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
USB_BOOT	115	DI	Matrix key input0		It can be multiplexed as KEYIN0 after startup.
KEYIN1	78	DI	Matrix key input1		1.8 V power domain. If unused, keep it open. The KEYIN1 cannot be pulled up before startup.
KEYIN2	79	DI	Matrix key input2		
KEYIN3	80	DI	Matrix key input3		
KEYOUT0	83	DO	Matrix key output0		1.8 V power domain.
KEYOUT1	84	DO	Matrix key output1		If unused, keep them open.
KEYOUT2	113	DO	Matrix key output2		-
KEYOUT3	114	DO	Matrix key output3		-
SD Card Interf	ace				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
SD_DET	23	DI	SD card detect		1.8 V power domain. If unused, keep it open.

SDIO1_DATA3	28	DIO	SDIO data bit 3	
SDIO1_DATA2	29	DIO	SDIO data bit 2	1.8/3.2 V power
SDIO1_DATA1	30	DIO	SDIO data bit 1	domain. If unused, keep them
SDIO1_DATA0	31	DIO	SDIO data bit 0	open.
SDIO1_CLK	32	DO	SDIO clock	

SDIO1_CMD	33	DIO	SDIO command				
SDIO1_VDD	34	PO	SDIO power supply		-		
WLAN Interface	*						
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment		
WLAN_SLP_ CLK	118	DO	WLAN sleep clock		lf unused, keep it open.		
WLAN_PWR_ EN	127	DO	WLAN power supply enable control	V _{OL} max = 0.45 V V _{OH} min = 1.35 V	1.8 V power domain. If unused, keep it open.		
SDIO2_DATA3	129	DIO	WLAN SDIO data bit 3	$V_{OL}max = 0.45 V$ $V_{OH}min = 1.35 V$ $V_{IL}min = -0.3 V$ $V_{IL}max = 0.6 V$ $V_{IH}min = 1.26 V$ $V_{IH}max = 2.0 V$			
SDIO2_DATA2	130	DIO	WLAN SDIO data bit 2	$V_{OL}max = 0.45 V$ $V_{OH}min = 1.35 V$ $V_{IL}min = -0.3 V$ $V_{IL}max = 0.6 V$ $V_{IH}min = 1.26 V$ $V_{IH}max = 2.0 V$	-		
SDIO2_DATA1	131	DIO	WLAN SDIO data bit 1	$V_{OL}max = 0.45 V$ $V_{OH}min = 1.35 V$ $V_{IL}min = -0.3 V$ $V_{IL}max = 0.6 V$ $V_{IH}min = 1.26 V$ $V_{IH}max = 2.0 V$	1.8 V power domain If unused, keep ther open.		
SDIO2_DATA0	132	DIO	WLAN SDIO data bit 0	$V_{OL}max = 0.45 V$ $V_{OH}min = 1.35 V$ $V_{IL}min = -0.3 V$ $V_{IL}max = 0.6 V$ $V_{IH}min = 1.26 V$ $V_{IH}max = 2.0 V$	-		
SDIO2_CLK	133	DO	WLAN SDIO CLK	$V_{OL}max = 0.45 V$ $V_{OH}min = 1.35 V$	-		
SDIO2_CMD	134	DO	WLAN SDIO command	V _{OL} max = 0.45 V V _{OH} min = 1.35 V	-		
WLAN_WAKE	135	DI	Wake up the module by an external Wi-Fi module	$V_{IL}min = -0.3 V$ $V_{IL}max = 0.6 V$ $V_{IH}min = 1.26 V$	1.8 V power domain. If unused, keep i		

				$V_{IH}max = 2.0 V$	
WLAN_EN	136	DO	WLAN function enable control	V _{OL} max = 0.45 V V _{OH} min = 1.35 V	-
Antenna Interfa	се				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
ANT_BT/WIFI_ SCAN	35	AIO	The shared antenna interface of Bluetooth and Wi-Fi Scan		Bluetooth and Wi-Fi Scan cannot be used simultaneously; Wi-Fi Scan antenna can only receive but not transmit. 50Ω characteristic impedance. If unused, keep it open.
ANT_GNSS	47	AI	GNSS antenna interface		50 Ω characteristic impedance. If unused, keep it open.
ANT_MAIN	49	AIO	Main antenna interface		50 Ω characteristic impedance.
USB_BOOT					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
USB_BOOT	115	DI	Control pin for the module to enter download mode	V _{IL} min = -0.3 V V _{IL} max = 0.6 V V _{IH} min = 1.26 V V _{IH} max = 2.0 V	1.8 V power domain, a circuit design for entering download mode should be reserved.
Other Interface					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
WAKEUP_IN	1	DI	Wake up the module	$V_{IL}min = -0.3 V$ $V_{IL}max = 0.6 V$ $V_{IH}min = 1.26 V$ $V_{IH}max = 2.0 V$	1.8 V power domain. Pull-up by default. If unused, keep it open.
AP_READY	2	DI	Application processor ready	V _{IL} min = -0.3 V V _{IL} max = 0.6 V	1.8 V power domain. If unused, keep it

				V _{IH} min = 1.26 V V _{IH} max = 2.0 V	open.
SLEEP_IND	3	DO	Sleep indicator	V _{OL} max = 0.45 V V _{OH} min = 1.35 V	1.8 V power domain. If unused, keep it open.
W_DISABLE#	4	DI	Airplane mode control	V _{IL} min = -0.3 V e V _{IL} max = 0.6 V V _{IH} min = 1.26 V V _{IH} max = 2.0 V	 1.8 V power domain. Pull-up by default. Driving the pin low can make the module enter the airplane mode. If unused, keep it open.
GPIO1	126	DO	CP log		It can output CP log, and only 8 Mbps baud rate is supported, and test points should be reserved.
BT_EN	139		Reserved		
GRFC1	143	DIO	Generic RF controller		
GRFC2	144	DIO	Generic RF controller		
Reserved Pins					
Pin Name	Pin No.				Comment
RESERVED	18, 55, 8	31, 82, 1	16, 117		Keep these pins open.

3.4. Operating Modes

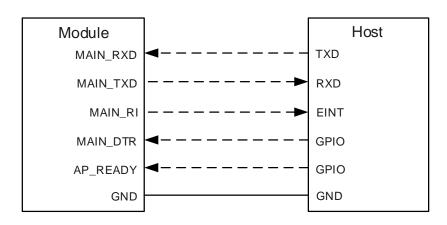
Mode	Details	
Normal Operation	Idle	Software is active. The module has registered on the network, and it is ready to send and receive data.
	Talk/Data	Network connection is ongoing. In this mode, the power consumption is decided by network setting and data transfer rate.

Table 7: Overview of Operating Modes

Minimum Functionality Mode	AT+CFUN=0 can set the module to a minimum functionality mode without removing the power supply. In this case, RF function will be invalid.
Airplane Mode	AT+CFUN=4 or W_DISABLE# can set the module to airplane mode. In this case, RF function will be invalid.
Sleep Mode	In this mode, the current consumption of the module will be reduced to the minimal level. In this mode, the module can still receive paging message, SMS, voice call and TCP/UDP data from the network normally.
Power Down Mode	In this mode, the power management unit (PMU) shuts down the power supply. Software is not active, the serial interface is not accessible, while operating voltage (connected to VBAT_RF and VBAT_BB) remains applied.

3.5. Power Saving

3.5.1. Sleep Mode

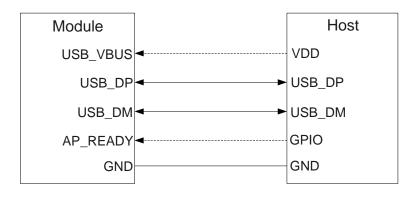

The module is able to reduce its current consumption to a minimum value in sleep mode. The following section describes power saving procedures of the module.

3.5.1.1. UART Application

If the host communicates with module via UART interface, the following preconditions should be met to let the module enter sleep mode.

- Execute **AT+QSCLK=1** to enable sleep mode.
- Drive MAIN_DTR to high level.

The following figure shows the connection between the module and the host.


- Driving MAIN_DTR to low level by the host can wake up the module.
- When the module has a URC to report, the URC will trigger the behavior of MAIN_RI pin. Please refer to *Chapter 3.22* for details about MAIN_RI behavior.

3.5.1.2. USB Application with USB Remote Wakeup Function*

If the host supports USB suspend/resume and remote wakeup functions, the following three preconditions must be met to make the module enter sleep mode.

- Execute AT+QSCLK=1 to enable sleep mode.
- Ensure the MAIN_DTR is held at high level, or keep it open.
- The host's USB bus, which is connected with the module's USB interface, enters suspended state.

The following figure shows the connection between the module and the host.

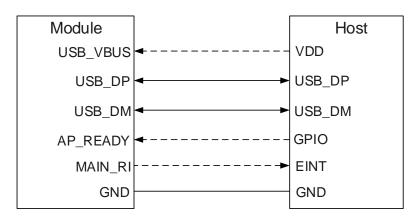
Figure 4: Sleep Mode Application with USB Remote Wakeup

- Sending data to the module through USB can wake up the module.
- When the module has a URC to report, the module will send remote wakeup signals via USB bus so as to wake up the host.

NOTE

- 1. USB suspend is supported on Linux system but not supported on Windows system.
- 2. Pay attention to the level match shown in dotted line between the module and the host.

3.5.1.3. USB Application with USB Suspend/Resume and MAIN_RI Function*


If the host supports USB suspend/resume but does not support remote wakeup function, the MAIN_RI signal is needed to wake up the host.

In this case, three preconditions can make the module enter the sleep mode.

- Execute **AT+QSCLK=1** to enable sleep mode.
- Ensure the MAIN_DTR is held at high level, or keep it open.
- Ensure the host's USB bus, which is connected with the module's USB interface, enters suspended state.

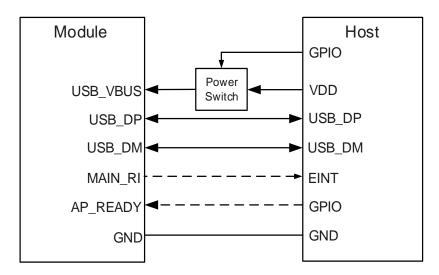
The following figure shows the connection between the module and the host.

Figure 5: Sleep Mode Application with MAIN_RI

- Sending data to the module through USB can wake up the module.
- When the module has a URC to report, the URC will trigger the behaviors of MAIN_RI pin.

NOTE

- 1. USB suspend is supported on Linux system but not supported on Windows system.
- 2. Pay attention to the level match shown in dotted line between the module and the host.


3.5.1.4. USB Application

If the host does not support USB suspend function, USB_VBUS should be disconnected via an external control circuit of USB_VBUS to let the module enter sleep mode.

- Execute **AT+QSCLK=1** to enable sleep mode.
- Ensure the MAIN_DTR is held at high level, or keep it open.
- Disconnect USB_VBUS.

The following figure shows the connection between the module and the host.

Figure 6: Sleep Mode Application without Suspended Function

The module will be wakened up when USB_VBUS is restored to be powered.

6	
NOTE	

Please pay attention to the level match shown in dotted line between the module and the host.

3.5.2. Airplane Mode

When the module enters airplane mode, the RF function does not work, and all AT commands related to RF function will be not accessible. This mode can be set via the following ways.

Hardware:

The W_DISABLE# is pulled up by default. Its control function for airplane mode, which is disabled by default in software, can be enabled through **AT+QCFG="airplanecontrol",1**. When such a control function is enabled, you can drive W_DISABLE# to low level to make the module enter airplane mode.

Software:

AT+CFUN = <fun> provides the choice of the functionality level through setting <fun> into 0, 1 or 4.

- AT+CFUN=0: Minimum functionality mode (RF functions are disabled).
- AT+CFUN=1: Full functionality mode (by default).
- AT+CFUN=4: RF function is disabled (Airplane mode).

3.6. Power Supply

3.6.1. Power Supply Pins

The module provides four VBAT pins for connection with the external power supply. There are two separate voltage domains for VBAT.

- Two VBAT_RF pins for module's RF part.
- Two VBAT_BB pins for module's baseband part and RF part.

Pin Name	Pin No.	Description	Min.	Тур.	Max.	Unit	
VBAT_RF	57, 58	Power supply for module's RF part	3.3	3.8	4.3	V	
VBAT_BB	59, 60	Power supply for module's baseband part and RF part	3.3	3.8	4.3	V	
GND	8, 9, 19, 22, 36, 46, 48, 50–54, 56, 72, 76, 85–112						

Table 8: VBAT and GND Pins

3.6.2. Voltage Stability Requirements

The power supply range of the module is from 3.3 V to 4.3 V. Please make sure that the input voltage will never drop below 3.3 V. The following figure shows the voltage drop during burst transmission in 2G network. The voltage drop will be less in 4G networks.

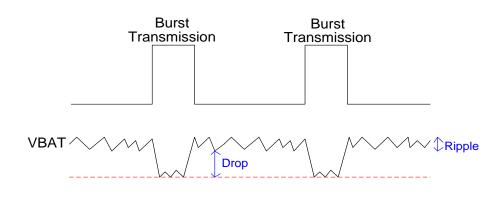
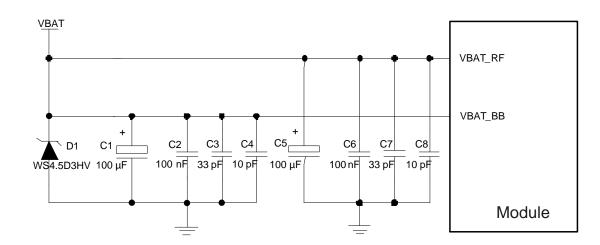



Figure 7: Power Supply Limits during Burst Transmission

To decrease voltage drop, a bypass capacitor of about 100 μ F with low ESR (ESR = 0.7 Ω) should be used, and a multi-layer ceramic chip (MLCC) capacitor array should also be reserved due to its ultra-low ESR. It is recommended to use three ceramic capacitors (100 nF, 33 pF, 10 pF) for composing the MLCC array, and place these capacitors close to VBAT_BB and VBAT_RF. The main power supply from an external application has to be a single voltage source and can be expanded to two sub paths with star configuration routing. The width of VBAT_BB trace should be no less than 2 mm; and the width of VBAT_RF trace should be no less than 2.5 mm. In principle, the longer the VBAT trace is, the wider it will be.

In addition, in order to ensure the stability of power source, it is suggested that a TVS diode of which reverse stand-off voltage is 4.7 V and peak pulse power is up to 2550 W should be used.

The following figure shows the star configuration routing of the power supply.

Figure 8: Star Configuration Routing of Power Supply

3.6.3. Reference Design for Power Supply

Power design for the module is very important, as the performance of the module largely depends on the power source. The power supply should be able to provide sufficient current up to 2.0 A to the module that only supports LTE network, while 3.0 A at least should be provided for GSM network. If the voltage drop between the input and output is not too high, it is suggested that an LDO should be used to supply power for the module. If there is a big voltage difference between the input source and the desired output (VBAT), use a buck converter as the power supply.

The following figure shows a reference design for +5 V input power source. The typical output of the power supply is about 3.8 V and the maximum load current is 3.0 A.

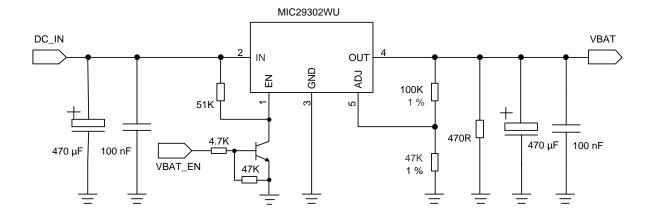


Figure 9: Reference Circuit of Power Supply

3.6.4. Monitor the Power Supply

You can use AT+CBC to monitor the VBAT_BB voltage value. For more details, see document [2].

3.7. Turn on/Turn off/Reset

3.7.1. Turn on Module with PWRKEY

Table	9:	Pin	Description	of	PWRKEY
IUDIC	•••		Description		

Pin Name	Pin No.	I/O	Description	Comment
PWRKEY	21	DI	Turn on/off the module	VBAT power domain

When the module is in power-off mode, it can be turned on to normal mode by driving PWRKEY to a low level for at least 2 s. It is recommended to use an open drain/collector driver to control the PWRKEY. A simple reference circuit is illustrated in the following figure.

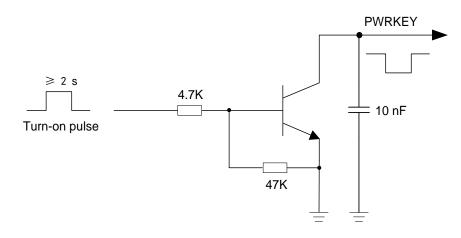


Figure 10: Turn on Module by Using Driving Circuit

Another way to control the PWRKEY is to use a button directly. When pressing the button, electrostatic strike may generate from finger. Therefore, a TVS component is indispensable to be placed nearby the button for ESD protection.

A reference circuit is shown in the following figure.

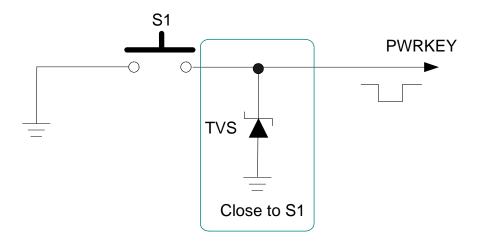
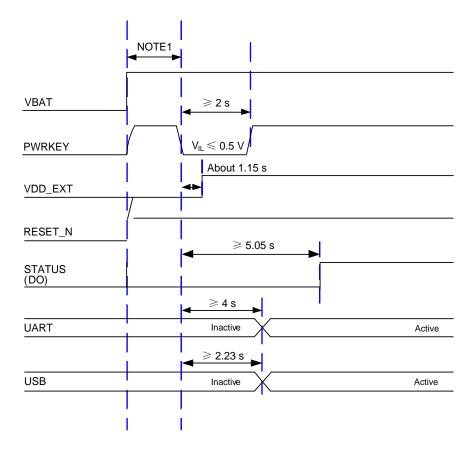



Figure 11: Turn on Module by Using Button

The power-up scenario is illustrated in the following figure.

NOTE

- 1. Please make sure that VBAT is stable before PWRKEY is pulled down. It is recommended that the time interval between powering up VBAT and pulling down PWRKEY is no less than 30 ms.
- 2. PWRKEY can be pulled down directly to GND with a recommended 1 kΩ resistor if the module needs being powered on automatically and shutdown is not needed.

3.7.2. Turn off Module

The following ways can be used to turn off the module:

- Turn off the module with PWRKEY.
- Turn off the module by using **AT+QPOWD**.

3.7.2.1. Turn off Module with PWRKEY

Driving PWRKEY low for at least 3 s and releasing it, the module executes power-down procedure.

The power-down scenario is illustrated in the following figure.



Figure 13: Power-down Timing

3.7.2.2. Turn off Module with AT Command

It is also a safe way to use **AT+QPOWD** to turn off the module, which is similar to the procedure of turning off the module via PWRKEY.

Please refer to *document [2]* for details about AT+QPOWD.

- 1. In order to avoid damaging internal flash, please do not switch off the power supply when the module works normally. Only after the module is shut down by PWRKEY or AT command, can the power supply be cut off.
- 2. When keeping the PWRKEY to the ground, the module can only be forced to turn off by cutting off the VBAT power supply considering that the module cannot be turned off with AT command. Therefore, it is recommended that you can turn on or turn off the module by pulling up and pulling down the PWEKEY instead of keeping the PWRKEY to the ground.
- 3. When being turned off, the module will log out of the network. The time for logging out relates to its network status. Thus, please pay attention to the shutdown time in your design because the actual shutdown time varies with the network status.

3.7.3. Reset the Module

The RESET_N can be used to reset the module. The module can be reset by driving RESET_N low for at least 100 ms and then releasing it. The RESET_N signal is sensitive to interference, so it is recommended to route the trace as short as possible and surround it with ground.

Table 10: Pin Description of RESET_N

Pin Name	Pin No.	I/O	Description	Comment
RESET_N	20	DI	Reset the module	VBAT power domain

The recommended circuit is similar to the PWRKEY control circuit. An open drain/collector driver or button can be used to control the RESET_N.

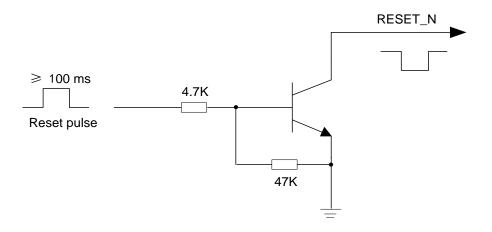
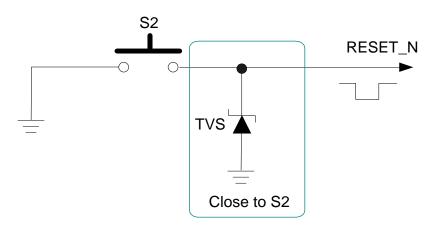



Figure 14: Reference Circuit of RESET_N by Using Driving Circuit

Figure 15: Reference Circuit of RESET_N by Using Button

The timing of resetting module is illustrated in the following figure.

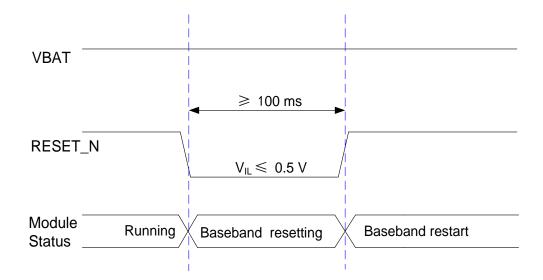


Figure 16: Timing of Resetting Module

NOTE

- 1. Ensure that there is no large capacitance exceeding 10 nF on PWRKEY and RESET_N.
- It is recommended to use RESET_N only when the module cannot be turned off by AT+QPOWD or PWRKEY.

3.8. (U)SIM Interfaces

The module provides two (U)SIM interfaces, and it supports DSDS function. The (U)SIM interfaces meet ETSI and IMT-2000 requirements. Both 1.8 V and 3.0 V (U)SIM cards are supported.

Pin Name	Pin No.	I/O	Description	Comment
USIM_VDD	14	PO	(U)SIM card power supply	Either 1.8 V or 3.0 V (U)SIM card is supported and can be identified automatically by the module.
USIM_DATA	15	DIO	(U)SIM card data	
USIM_CLK	16	DO	(U)SIM card clock	

Table 11:	Pin	Definition	of	(U)SIM1	Interface
-----------	-----	------------	----	---------	-----------

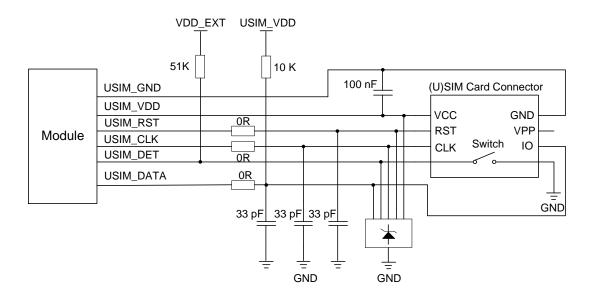

USIM_RST	17	DO	(U)SIM card reset	
USIM_DET	13	DI	(U)SIM card hot-plug detect	1.8 V power domain. If unused, keep it open.
USIM_GND	10		(U)SIM card GND	

Table 12: Pin Definition of (U)SIM2 Interface

Pin Name	Pin No.	I/O	Description	Comment
USIM2_VDD	128	PO	(U)SIM2 card power supply	The (U)SIM2 function is optional. If the firmware version of the module
AP_READY	2	DIO	(U)SIM2 card data	supports the function of the
WAKEUP_IN	1	DO	(U)SIM2 card clock	 (U)SIM2 card, the relevant functions of the (U)SIM2 card can
W_DISABLE#	4	DO	(U)SIM2 card reset	be realized by multiplexing AP_READY, WAKEUP_IN,
SLEEP_IND	3	DI	(U)SIM2 card hot-plug detect	SLEEP_IND, and W_DISABLE# pins. For details, please consult Quectel Technical Supports.

The module supports (U)SIM card hot-plug via the USIM_DET, and both high and low level detections are supported. By default, the function is disabled, and it can be enabled by **AT+QSIMDET**. Please see *document* [2] for more details about the **AT+QSIMDET**.

The following figure shows a reference design for (U)SIM interface with an 8-pin (U)SIM card connector.

If (U)SIM card detection function is not needed, please keep USIM_DET unconnected. A reference circuit for (U)SIM interface with a 6-pin (U)SIM card connector is illustrated in the following figure.

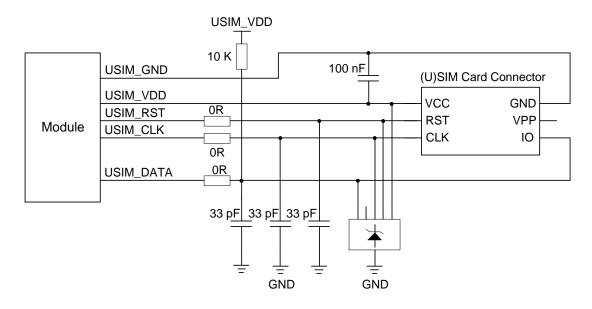


Figure 18: Reference Circuit of (U)SIM Interface with a 6-Pin (U)SIM Card Connector

In order to enhance the reliability and availability of the (U)SIM card in your applications, please follow the criteria below in (U)SIM circuit design:

- Place (U)SIM card connector as close to the module as possible. Keep the trace length less than 200 mm as far as possible.
- Keep (U)SIM card signals away from RF and VBAT traces.
- Keep the trace between the ground of (U)SIM card connector and USIM_GND short and wide. Keep the trace width of USIM_GND and USIM_VDD no less than 0.5 mm to maintain the same electric potential. If the ground is complete on your PCB, USIM_GND can be connected to PCB ground directly.
- To avoid cross-talk between USIM_DATA and USIM_CLK, keep them away from each other and shield them with surrounded ground.
- In order to offer good ESD protection, it is recommended to add a TVS diode array whose parasitic capacitance should not be more than 15 pF. The 0 Ω resistors should be added in series between the module and the (U)SIM card to facilitate debugging. The 33 pF capacitors on USIM_DATA, USIM_CLK and USIM_RST are used for filtering interference of EGSM900. Please note that the (U)SIM peripheral circuit should be close to the (U)SIM card connector.
- The pull-up resistor on USIM_DATA can improve anti-jamming capability of the (U)SIM card. If the (U)SIM card traces are too long, or the interference source is relatively close, it is recommended to add a pull-up resistor near the (U)SIM card connector.

3.9. USB Interface

The module provides one integrated Universal Serial Bus (USB) interface which complies with the USB 2.0 specification and supports high-speed (480 Mbps) and full-speed (12 Mbps) modes. The USB interface only supports USB slave mode and it can be used for AT command communication, data transmission, software debugging and firmware upgrade.

Pin Name	Pin No.	I/O	Description	Comment
	69	AIO	USB differential data bus (+)	Require differential
USB_DP	09	AIO		impedance of 90 Ω
	70	A10	USB differential data bus (-)	Require differential
USB_DM	70	AIO		impedance of 90 Ω
	71	AI	LICD connection detect	Typical 5.0 V,
USB_VBUS	/ 1	AI	USB connection detect	Minimum 3.5 V
GND	72		Ground	

Table 13: Pin Description of USB Interface

For more details about the USB 2.0 specifications, please visit http://www.usb.org/home.

Reserve test points for debugging and firmware upgrade in your design. The following figure shows a reference circuit of USB interface.

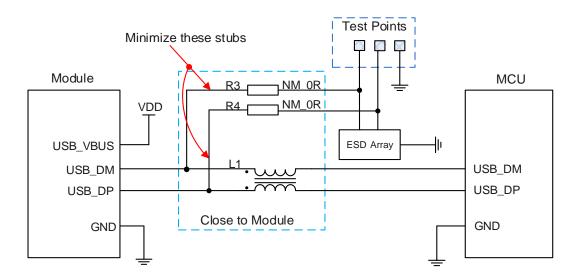


Figure 19: Reference Circuit of USB Application

A common mode choke L1 is recommended to be added in series between the module and your MCU in order to suppress EMI spurious transmission. Meanwhile, the 0 Ω resistors (R3 and R4) should be added in series between the module and the test points so as to facilitate debugging, and the resistors are not mounted by default. In order to ensure the integrity of USB data line signal, L1, R3 and R4 components must be placed close to the module, and also these resistors should be placed close to each other. The extra stubs of trace must be as short as possible.

The following principles should be complied with when designing the USB interface, so as to meet USB 2.0 specification.

- Route the USB signal traces as differential pairs with ground surrounded. The impedance of USB differential trace is 90 Ω.
- Do not route signal traces under crystals, oscillators, magnetic device and RF signal traces. It is recommended to route the USB differential traces in inner-layer of the PCB and to surround the traces with ground on that layer and with ground planes above and below.
- Pay attention to the influence of junction capacitance of ESD protection components on USB data lines. Typically, the capacitance value should be less than 2.0 pF, and keep the ESD protection components to the USB connector as close as possible.

3.10. UART Interfaces

The module provides three UART interfaces: the main UART interface, the debug UART interface and auxiliary UART Interface. The following shows their features.

- Main UART interface: The main UART interface supports 4800, 9600, 19200, 38400, 57600, 115200, 230400, 460800 and 921600 bps baud rates, and the default is 115200 bps. This interface is used for data transmission and AT command communication and supports RTS and CTS hardware flow control.
- Debug UART interface: Only supports 921600 bps baud rate, used for the output of partial logs.
- Auxiliary UART Interface

Pin Name	Pin No.	I/O	Description	Comment
MAIN_RI	62	DO	Main UART ring indication	
MAIN_DCD	63	DO	Main UART data carrier detect	1.8 V power domain.
MAIN_CTS	64	DO	DTE clear to send signal from DCE (Connect to DTE's CTS)	If unused, keep them open.

Table 14: Pin Definition of Main UART Interface

MAIN_RTS	65	DI	DTE request to send signal to DCE (Connect to DTE's RTS)
MAIN_DTR	66	DI	Main UART data terminal ready
MAIN_TXD	67	DO	Main UART transmit
MAIN_RXD	68	DI	Main UART receive

Table 15: Pin Definition of Debug UART Interface

Pin Name	Pin No.	I/O	Description	Comment
DBG_TXD	12	DO	Debug UART transmit	1.8 V power domain. If unused, keep them open.
DBG_RXD	11	DI	Debug UART receive	

Table 16: Pin Definition of Auxiliary UART Interface

Pin Name	Pin No.	I/O	Description	Comment
AUX_TXD	138	DO	Auxiliary UART transmit	1.8 V power domain. If unused, keep them open.
AUX_RXD	137	DI	Auxiliary UART receive	

The module provides 1.8 V UART interface. Use a level shifter if the application is equipped with a 3.3 V UART interface. A level shifter TXS0108EPWR provided by *Texas Instruments* is recommended. The following figure shows a reference design.

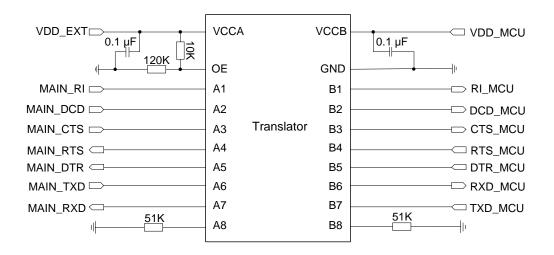
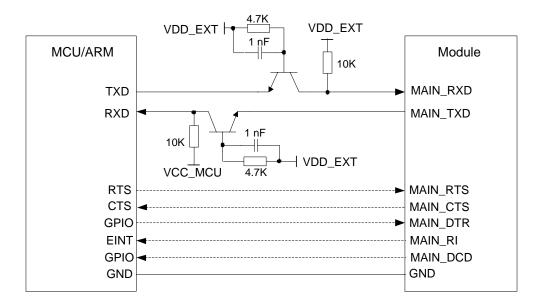



Figure 20: Reference Circuit with Translator Chip

Please visit <u>http://www.ti.com</u> for more information.

Another example with transistor circuit is shown as below. For the design of circuits shown in dotted lines, see that shown in solid lines, but pay attention to the direction of connection.

Figure 21: Reference Circuit with Transistor Circuit

NOTE

- 1. Triode level transistor circuit solution is not suitable for applications with baud rates exceeding 460 kbps.
- 2. Please note that the module CTS is connected to the host CTS, and the module RTS is connected to the host RTS.

3.11. SPI Interface

The SPI interface of EC200U series module only supports master mode. It allows the full duplex synchronous communication between module and peripherals. Its working voltage is 1.8 V, and the maximum clock frequency is 25 MHz. If a universal 4-wire SPI interface is used to connect to Nor Flash, it provides the basic Flash operation including reading, writing and erasing, and does not support the file system.

QUECTEL

Table 17: Pin Definition of SPI interface

Pin Name	Pin No.	I/O	Description	Comment	
SPI_CS	37	DO	SPI chip select	If you use a module model	
SPI_MOSI	38	DO	SPI master mode output	that supports GNSS function, the SPI function of	
SPI_MISO	39	DI	SPI master mode input	Pin 37–40 cannot be used and needs to be left	
SPI_CLK	40	DO	SPI clock	unconnected.	

3.12. I2C Interfaces

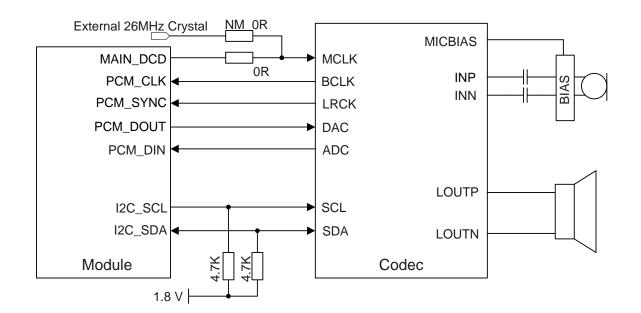
The module provides two I2C interfaces.

Pin Name	Pin No.	I/O	Description	Comment
I2C_SCL	41	OD	I2C serial clock	
I2C_SDA	42	OD	I2C serial data	Require external pull-up to 1.8 V
I2C2_SCL	141	OD	I2C serial clock	—— if used. If unused, keep it open.
I2C2_SDA	142	OD	I2C serial data	

Table 18: Pin Definition of I2C Interfaces

NOTE

The I2C bus supports simultaneous connection of multiple peripherals except for codec IC. In other words, if a codec IC has been mounted on the I2C bus, no other peripherals can be mounted. If there is no codec IC on the bus, multiple peripherals can be mounted.


3.13. PCM Interface

The module provides one PCM interface which only supports slave mode.

Pin Name	Pin No.	I/O	Description	Comment
PCM_DIN	24	DI	PCM data input	1.8 V power domain. If unused, keep it open.
PCM_DOUT	25	DO	PCM data output	1.8 V power domain. If unused, keep it open.
PCM_SYNC	26	DI	PCM data frame sync	1.8 V power domain. If unused, keep it open. The PCM
PCM_CLK	27	DI	PCM clock	function only supports slave mode.

Table 19: Pin Definition of PCM Interface

The following figure shows the reference design of PCM and I2C interface with external Codec chip:

Figure 22: Reference Circuit of I2C and PCM Application with External Codec Chip

NOTE

It is recommended to reserve an RC (R = 22 Ω , C = 22 pF) circuit on the PCM traces, especially for PCM_CLK.

3.14. Analog Audio Interfaces

The module provides one analog audio input channel and one analog audio output channel. The pin definition is shown in the table below.

Interface	Pin Name	Pin No.	I/O	Description
AOUT	LOUDSPK_P	73	AO	Loudspeaker differential output (+)
A001	LOUDSPK_N	74	AO	Loudspeaker differential output (-)
Δ INI	MIC_P	75	AI	Microphone analog input (+)
AIN	MIC_N	77	AI	Microphone analog input (-)

Table 20: Pin Definition of Analog Audio Interfaces

- AIN channel is a differential input channel, which can be applied for input of microphone (usually an electret microphone).
- The AOUT channel is a differential output with a built-in power amplifier. The default configuration of power amplifier is Class AB and the maximum driving power is 500 mW for 8 Ω load. When PA is configured as Class D, the maximum driving power is 800 mW for 8 Ω load.

3.14.1. Notes on Audio Interface Design

It is recommended to use the electret microphone with dual built-in capacitors (e.g. 10 pF and 33 pF) for filtering out RF interference, thus reducing TDD noise. The 33 pF capacitor is applied for filtering out RF interference when the module is transmitting at EGSM900. Without placing this capacitor, TDD noise could be heard. The 10 pF capacitor here is used for filtering out RF interference at DCS1800. Please note that the resonant frequency point of a capacitor largely depends on the material and production technique. Therefore, you would have to discuss with their capacitor vendors to choose the most suitable capacitor for filtering out high-frequency noises.

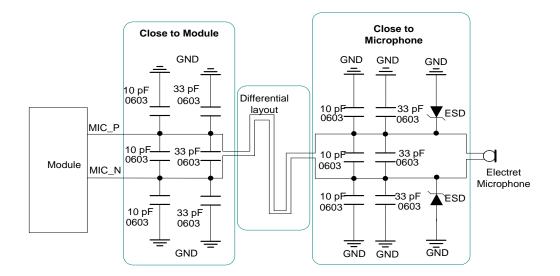
The severity degree of the RF interference in the voice channel during GSM transmitting largely depends on the application design. In some cases, EGSM900 TDD noise is more severe; while in other cases, DCS1800 TDD noise is more obvious. Therefore, a suitable capacitor can be selected based on the test results. The filter capacitors on the PCB should be placed as close to the audio devices or audio interfaces as possible, and the traces should be as short as possible. They should go through the filter capacitors before arriving at other connection points.

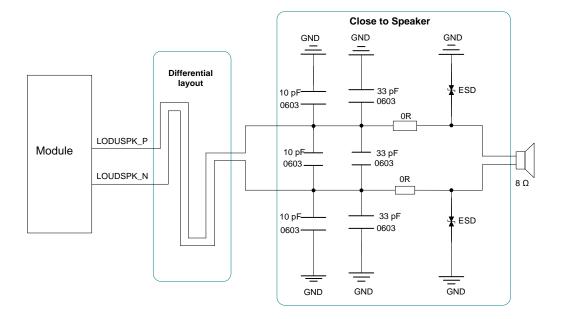
In order to decrease radio or other signal interference, RF antennas should be placed away from audio interfaces and audio traces. Power traces cannot be parallel with and also should be far away from the audio traces.

The differential audio traces must be routed according to the differential signal layout rule.

3.14.2. Microphone Interface Circuit

The reference circuit of the microphone interface is shown in the figure below:




Figure 23: Reference Circuit of Microphone Interface

NOTE

MIC channel is sensitive to ESD, so it is not recommended to remove the ESD components used for protecting the MIC.

3.14.3. Loudspeaker Interface Circuit

Figure 24: Reference Circuit of Loudspeaker Interface

3.15. LCD Interface

The LCD interface of the module supports a liquid crystal display with a maximum resolution of 320×240 and DMA transmission, 16-bit RGB565 and YUV formats.

Pin Name	Pin No.	I/O	Description	Comment
LCD_FMARK	119	DI	LCD frame synchronization	
LCD_RSTB	120	DO	LCD reset	
LCD_SEL	121	-	Reserved	1.8 V power domain.
LCD_CS	122	DO	LCD chip select	If unused, keep them open.
LCD_CLK	123	DO	LCD clock	
LCD_SDC	124	DO	LCD register selection	

Table 21: Pin Definition of LCD Interface

LCD_SI/O	125	DIO	LCD data	
ISINK	140	PI	Sink current input. Backlight adjustment	Imax = 200 mA It is driven by the current sink method, and connected to the backlight cathode, the brightness can be adjusted with current control.

3.16. Matrix Keyboard Interface

The module provides one keyboard interface. It supports 4 × 4 matrix keyboard.

Table 22: P	in Definition of	Matrix Keyb	oard Interface
-------------	------------------	-------------	----------------

Pin Name	Pin No.	I/O	Description	Comment	
USB_BOOT	115	DI	Matrix keyboard input0	1.8 V power domain.If unused, keep it open.The USB_BOOT cannot be pulled up before startup and it can be used as KEYIN0 after startup.	
KEYIN1	78	DI	Matrix keyboard input1	1.8 V power domain. If unused, keep it open. The KEYIN1 cannot be pulled up before startup.	
KEYIN2	79	DI	Matrix keyboard input2		
KEYIN3	80	DI	Matrix keyboard input3	_	
KEYOUT0	83	DO	Matrix keyboard output0	1.8 V power domain.	
KEYOUT1	84	DO	Matrix keyboard output1	If unused, keep them open.	
KEYOUT2	113	DO	Matrix keyboard output2	_	
KEYOUT3	114	DO	Matrix keyboard output3		

3.17. SD Card Interface

The module supports SDIO 2.0 interface for SD card.

Table 23: Pin Definition of SD Card Interface	Table 23:	Pin	Definition	of S	D Card	Interface
---	-----------	-----	------------	------	--------	-----------

Pin Name	Pin No.	I/O	Description	Comment
SD_DET	23	DI	SD card detect	1.8 V power domain. If unused, keep it open.
SDIO1_DATA3	28	DIO	SDIO data bit 3	
SDIO1_DATA2	29	DIO	SDIO data bit 2	_
SDIO1_DATA1	30	DIO	SDIO data bit 1	
SDIO1_DATA0	31	DIO	SDIO data bit 0	1.8/3.2V power domain. If unused, keep them open.
SDIO1_CLK	32	DO	SDIO clock	
SDIO1_CMD	33	DIO	SDIO command	
SDIO1_VDD	34	PO	SDIO power supply	_

The following figure shows a reference design of SD card interface.

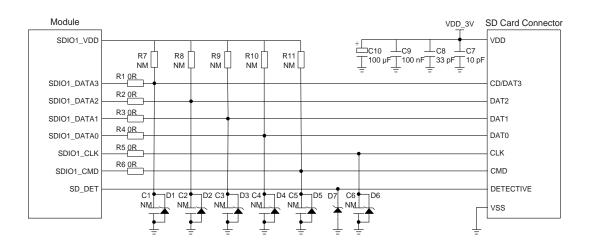


Figure 25: Reference Circuit of SD Card Interface

QUECTEL

In SD card interface design, in order to ensure good communication performance with SD card, the following design principles should be complied with:

- The voltage range of SD card power supply VDD_3 V is 2.7–3.6 V and a sufficient current up to 0.8 A should be provided. As the maximum output current of SDIO1_VDD is 150 mA which can only be used for SDIO pull-up resistors, an externally power supply is needed for SD card.
- To avoid jitter of bus, resistors R7–R11 are needed to pull up the SDIO to SDIO1_VDD. Value of these resistors is among 10–100 kΩ and the recommended value is 100 kΩ. SDIO1_VDD should be used as the pull-up power.
- In order to adjust signal quality, it is recommended to add 0 Ω resistors R1–R6 in series between the module and the SD card. The bypass capacitors C1–C6 are reserved and not mounted by default. All resistors and bypass capacitors should be placed close to the module.
- In order to offer good ESD protection, it is recommended to add a TVS diode on SD card pins near the SD card connector with junction capacitance less than 15 pF.
- Keep SDIO signals far away from other sensitive circuits/signals such as RF circuits, analog signals, etc., as well as noisy signals such as clock signals, DC-DC signals, etc.
- It is important to route the SDIO signal surrounded with ground on the layer and ground planes above and below. The impedance of SDIO data trace is 50 $\Omega \pm 10$ %.
- Make sure the adjacent trace spacing is more than two times of the trace width and the load capacitance of SDIO bus should be less than 15 pF.
- It is recommended to keep the trace length difference between SDIO1_CLK and SDIO1_DATA [0:3]/ SDIO1_CMD less than 1 mm and the total routing length less than 50 mm.

3.18. WLAN Application Interface*

The module provides an SDIO 1.1 standard WLAN application interface.

Pin Name	Pin No.	I/O	Description	Comment
WLAN_SLP_CLK	118	DO	WLAN sleep clock	If unused, keep it open.
WLAN_PWR_EN	127	DO	WLAN power supply enable control	_
SDIO2_DATA3	129	DIO	WLAN SDIO data bit 3	
SDIO2_DATA2	130	DIO	WLAN SDIO data bit 2	 1.8 V power domain. If unused, keep them open.
SDIO2_DATA1	131	DIO	WLAN SDIO data bit 1	_
SDIO2_DATA0	132	DIO	WLAN SDIO data bit 0	_

Table 24: Pin Definition of WLAN Interface

SDIO2_CLK	133	DO	WLAN SDIO CLK
SDIO2_CMD	134	DO	WLAN SDIO command
WLAN_WAKE	135	DI	Wake up the module by anexternal Wi-Fi module1.8 V power domain.
WLAN_EN	136	DO	WLAN function enable If unused, keep them open. control

The SDIO interface rate is very high. To ensure that the interface design complies with the SDIO 1.1 specification, the following principles are recommended:

- It is important to route the SDIO signal surrounded with ground on the layer and ground planes above and below. The impedance of SDIO data trace is 50 $\Omega \pm 10$ %.
- Keep SDIO signals far away from other sensitive circuits/signals such as RF circuits, analog signals, etc., as well as noisy signals such as clock signals, DC-DC signals, etc.
- It is recommended to keep the trace length difference between WLAN_SDIO_CLK and WLAN_SDIO_DATA [0:3]/ WLAN_SDIO_CMD less than 1 mm and the total routing length less than 50 mm.
- Make sure the adjacent trace spacing is more than two times of the trace width and the load capacitance of SDIO bus should be less than 15 pF.

NOTE

WLAN application interface conflicts with other functions, and please consult Quectel Technical Supports for details.

3.19. ADC Interfaces

The module provides three ADC interfaces. **AT+QADC=0** can be used to read the voltage value on ADC0 pin. **AT+QADC=1** can be used to read the voltage value on ADC1 pin. **AT+QADC=2** can be used to read the voltage value on ADC2 pin. For more details about **AT+QADC**, please refer to *document [2]*.

In order to improve the accuracy of ADC, the trace of ADC should be surrounded with ground.

Pin Name	Pin No.	Description	Comment
ADC0	45	General-purpose ADC interface	— Use a 1 kΩ resistor in series if
ADC1	44	General-purpose ADC interface	used.
ADC2	43	General-purpose ADC interface	If unused, keep them open.

Table 25: Pin Definition of ADC Interfaces

Table 26: Characteristic of ADC Interfaces

Parameter	Min.	Тур.	Max.	Unit
ADC0 Voltage Range	0	-	VBAT_BB	V
ADC1 Voltage Range	0	-	VBAT_BB	V
ADC1 Voltage Range	0	-	VBAT_BB	V
ADC Resolution	_	12	-	bits

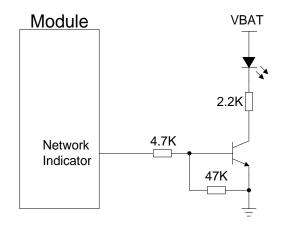
NOTE

The external resistor should be less than 100 k Ω when the voltage divider resistor applies.

3.20. Network Status Indication

The network indication pins can be used to drive network status indication LEDs. The module has NET_MODE and NET_STATUS for network status indication. The following tables describe pin definition and logic level changes in different network status.

Table 27: Pin Definition of Network Connect	tion Status/Activity Indicator
---	--------------------------------


Pin Name	Pin No.	I/O	Description	Comment	
NET_MODE	5	DO	Indicate the module's network activity status	1.8 V power domain.	
NET_STATUS	6	DO	Indicate the module's network registration mode	 If unused, keep them open. 	

Pin Name	Logic Level Changes	Network Status
NET STATUS	Always high	Registered on LTE network
NET_STATUS	Always low	Others
NET_MODE	Flicker slowly (200 ms high/1800 ms low)	Network searching
	Flicker quickly (234 ms high/266 ms low)	Idle
	Flicker rapidly (62 ms high/63 ms low)	Data transfer is ongoing
	Always high	Voice calling

Table 28: Working State of Network Connection Status/Activity Indicator

A reference circuit is shown in the following figure.

Figure 26: Reference Circuit of Network Indicator

3.21. STATUS

The STATUS pin is an output for module's operation status indication. When the module is turned on normally, the STATUS outputs high level.

Pin Name	Pin No.	I/O	Description	Comment
STATUS	61	DO	Indicate the module's operation status	1.8 V power domain. If unused, keep it open.

A reference circuit is shown in the following figure.

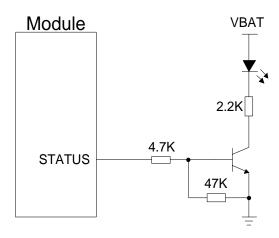


Figure 27: Reference Circuit of STATUS

NOTE

The STATUS cannot be used as the indication of power-down state when VBAT doesn't supply power to the module.

3.22. Behaviors of MAIN_RI

AT+QCFG="risignaltype","physical" can be used to configure MAIN_RI behaviors.

No matter on which port a URC is presented, the URC will trigger the behavior of MAIN_RI pin.

NOTE

The **AT+QURCCFG** allows you to set the main UART, USB AT port or USB modem port as the URC output port. The USB AT port is used to send AT commands by default.

In addition, MAIN_RI behaviors can be configured flexibly. The default behaviors of the MAIN_RI are shown as below.

Table 30: Behaviors of the MAIN_RI

State	Response
Idle	MAIN_RI keeps at high level
URC	MAIN_RI outputs 120 ms low pulse when a new URC returns

The MAIN_RI behavior can be configured by **AT+QCFG="urc/MAIN_RI/ring"** and see *document [2]* for details.

3.23. USB_BOOT Interface

The module provides a USB_BOOT pin. You can pull up USB_BOOT to 1.8 V before VDD_EXT is powered up, and the module will enter download mode when it is powered on. In this mode, the module can upgrade firmware over USB interface.

If your application has a scan key, you can also press the "USB_BOOT + KEYOUT0" scan key before powering on the module, and the module will enter the download mode when it is turned on.

Table 31: Pin Definition of USB_BOOT Interface

Pin Name	Pin No.	I/O	Description	Comment
USB_BOOT	115	DI	Control pin for the module to enter download mode	1.8 V power domain.Active high.The download control circuit must be reserved.

The following figure shows a reference circuit of USB_BOOT interface.

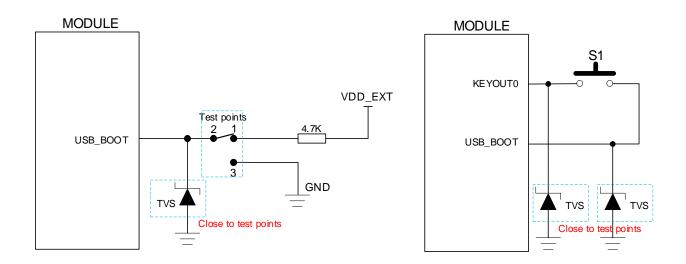


Figure 28: Reference Circuit of USB_BOOT Interface

NOTE

Please make sure that VBAT is stable before PWRKEY is pulled down. It is recommended that the time interval between powering up VBAT and pulling down PWRKEY is no less than 30 ms.

4 Antenna Interfaces

EC200U series module provides a main antenna interface, a Wi-Fi Scan/Bluetooth antenna interface and a GNSS antenna interface. The antenna ports have an impedance of 50 Ω .

4.1. Main Antenna and Wi-Fi Scan/Bluetooth Antenna Interfaces

4.1.1. Pin Definition

The pin definition of main antenna and Wi-Fi Scan/Bluetooth antenna interfaces is shown below.

Pin Name	Pin No.	I/O	Description	Comment
ANT_MAIN	49	AIO	Main antenna interface	50 Ω impedance.
ANT_BT/WIFI _SCAN	35	AIO	The shared antenna interface of Wi-Fi Scan/Bluetooth; Bluetooth and Wi-Fi Scan cannot be used simultaneously; Wi-Fi Scan antenna can only receive but not transmit.	50 Ω impedance. If unused, keep it open.

Table 32: Pin Definition of Antenna Interfaces

NOTE

EC200U series supports Bluetooth and Wi-Fi Scan functions. Due to the shared antenna interface, the two functions cannot be used at the same time; Bluetooth and Wi-Fi Scan functions are optional (supported or not supported simultaneously), please contact Quectel Technical Supports for details.

4.1.2. Operating Frequency

Table 33: EC200U-CN Operating Frequencies

3GPP Band	Transmit	Receive	Unit
EGSM900	880–915	925–960	MHz
DCS1800	1710–1785	1805–1880	MHz
LTE-FDD B1	1920–1980	2110–2170	MHz
LTE-FDD B3	1710–1785	1805–1880	MHz
LTE-FDD B5	824–849	869–894	MHz
LTE-FDD B8	880–915	925–960	MHz
LTE-TDD B34	2010–2025	2010–2025	MHz
LTE-TDD B38	2570–2620	2570–2620	MHz
LTE-TDD B39	1880–1920	1880–1920	MHz
LTE-TDD B40	2300–2400	2300–2400	MHz
LTE-TDD B41	2535–2675	2535–2675	MHz

NOTE

The GSM network access technology of EC200U-CN is optional. If the module that you select doesn't support GSM network access technology, there is no corresponding frequency band.

Table 34: EC200U-EU Operating Frequencies

3GPP Band	Transmit	Receive	Unit
GSM850	824–849	869–894	MHz
EGSM900	880–915	925–960	MHz
DCS1800	1710–1785	1805–1880	MHz
PCS1900	1850–1910	1930–1990	MHz
LTE-FDD B1	1920–1980	2110–2170	MHz
LTE-FDD B3	1710–1785	1805–1880	MHz

LTE-FDD B5	824–849	869–894	MHz
LTE-TDD B7	2500–2570	2620–2690	MHz
LTE-FDD B8	880–915	925–960	MHz
LTE-TDD B20	832–862	791–821	MHz
LTE-TDD B28	703–748	758–803	MHz
LTE-TDD B38	2570–2620	2570–2620	MHz
LTE-TDD B40	2300–2400	2300–2400	MHz
LTE-TDD B41	2496–2690	2496–2690	MHz

4.1.3. Reference Design of RF Antenna Interfaces

A reference design of ANT_MAIN and ANT_BT/WIFI_SCAN is shown as below. A π -type matching circuit should be reserved for better RF performance. The capacitors are not mounted by default.

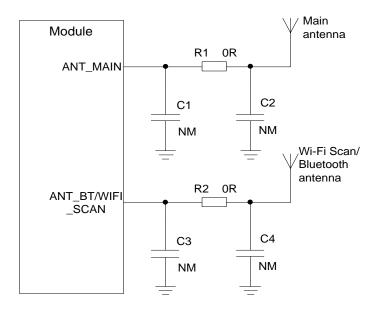


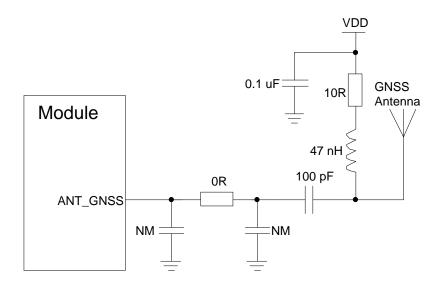
Figure 29: Reference Circuit of RF Antenna Interfaces

NOTE

- 1. In order to improve the receiving sensitivity, it is necessary to ensure the proper distance between the main antenna and Wi-Fi Scan/Bluetooth receiving antenna.
- 2. Place the π-type matching components (R1 & C1 & C2 and R2 & C3 & C4) as close to the antenna as possible.

4.2. GNSS Antenna Interface

The following tables list the pin definition and frequency characteristics of the GNSS antenna interface respectively.


Table 35: Pin Definition of GNSS Antenna Interface

Pin Name	Pin No.	I/O	Description	Comment
ANT_GNSS	47	AI	GNSS antenna interface	50 Ω impedance. If unused, keep it open.

Table 36: GNSS Frequency

Туре	Frequency	Unit
GPS	1575.42 ±1.023	MHz
GLONASS	1597.5–1605.8	MHz
Galileo	1575.42 ±2.046	MHz
BeiDou (Compass)	1561.098 ±2.046	MHz
QZSS	1575.42	MHz

A reference design of GNSS antenna is shown as below:

NOTE

1. An external LDO can be selected to supply power according to the active antenna requirement.

2. The VDD circuit is not needed if you select a passive antenna.

4.3. Reference Design of RF Layout

For user's PCB, the characteristic impedance of all RF traces should be controlled as 50 Ω . The impedance of the RF traces is usually determined by the trace width (W), the materials' dielectric constant, height from the reference ground to the signal layer (H), and the space between the RF trace and the ground (S). Microstrip and coplanar waveguide are typically used in RF layout to control characteristic impedance. The following figures are reference designs of microstrip or coplanar waveguide with different PCB structures.

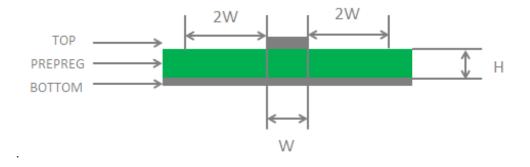


Figure 31: Microstrip Design on a 2-layer PCB

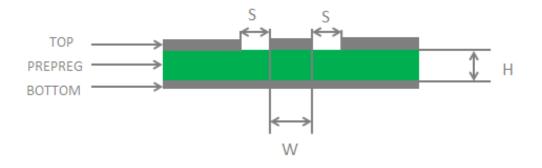


Figure 32: Coplanar Waveguide Design on a 2-layer PCB

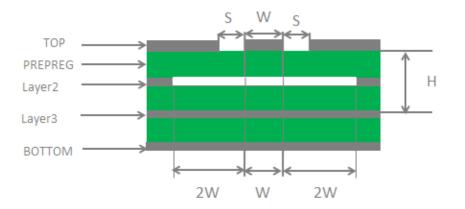


Figure 33: Coplanar Waveguide Design on a 4-layer PCB (Layer 3 as Reference Ground)

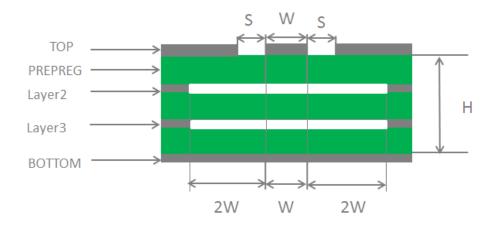


Figure 34: Coplanar Waveguide Design on a 4-layer PCB (Layer 4 as Reference Ground)

In order to ensure RF performance and reliability, the following principles should be complied with in RF layout design:

- Use an impedance simulation tool to accurately control the characteristic impedance of RF traces to 50 Ω.
- The GND pins adjacent to RF pins should not be designed as thermal relief pads, and should be fully connected to ground.
- The distance between the RF pins and the RF connector should be as short as possible, and all the right-angle traces should be changed to curved ones. The recommended trace angle is 135°.
- There should be clearance area under the signal pin of the antenna connector or solder joint.
- The reference ground of RF traces should be complete. Meanwhile, adding some ground vias around RF traces and the reference ground could help to improve RF performance. The distance between the ground vias and RF traces should be no less than two times the width of RF signal traces (2 × W).
- Keep RF traces away from interference sources, and avoid intersection and paralleling between traces on adjacent layers.

For more details about RF layout, please refer to document [3].

4.4. Antenna Installation

4.4.1. Antenna Requirement

The following table shows the requirements of main antenna.

Table 37: Antenna Requirements

Туре	Requirements		
	Frequency range: 1559–1609 MHz		
	Polarization: RHCP or linear		
	VSWR: < 2 (typ.)		
GNSS	Passive antenna gain: > 0 dBi		
	Active antenna noise factor: < 1.5 dB		
	Active antenna gain: > 0 dBi		
	Active antenna internal LNA gain: < 17 dB		
	VSWR: ≤ 2		
	Efficiency: > 30 %		
	Max input power: 50 W		
GSM/LTE	Input impedance: 50 Ω		
	< 1 dB: LB (< 1 GHz)		
	< 1.5 dB: MB (1–2.3 GHz)		
	< 2 dB: HB (> 2.3 GHz)		

4.4.2. Recommended RF Connector for Antenna Installation

If RF connector is used for antenna connection, it is recommended to use U.FL-R-SMT connector provided by Hirose.

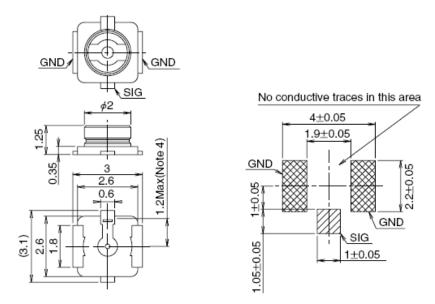


Figure 35: Dimensions of U.FL-R-SMT Connector (Unit: mm)

U.FL-LP serial connectors listed in the following figure can be used to match the U.FL-R-SMT.

	U.FL-LP-040	U.FL-LP-066	U.FL-LP(V)-040	U.FL-LP-062	U.FL-LP-088
Part No.					
Mated Height	2.5mm Max. (2.4mm Nom.)	2.5mm Max. (2.4mm Nom.)	2.0mm Max. (1.9mm Nom.)	2.4mm Max. (2.3mm Nom.)	2.4mm Max. (2.3mm Nom.)
Applicable cable	Dia. 0.81mm Coaxial cable	Dia. 1.13mm and Dia. 1.32mm Coaxial cable	Dia. 0.81mm Coaxial cable	Dia. 1mm Coaxial cable	Dia. 1.37mm Coaxial cable
Weight (mg)	53.7	59.1	34.8	45.5	71.7
RoHS	YES				

Figure 36: Mechanicals of U.FL-LP Connectors

The following figure describes the space factor of mated connector.

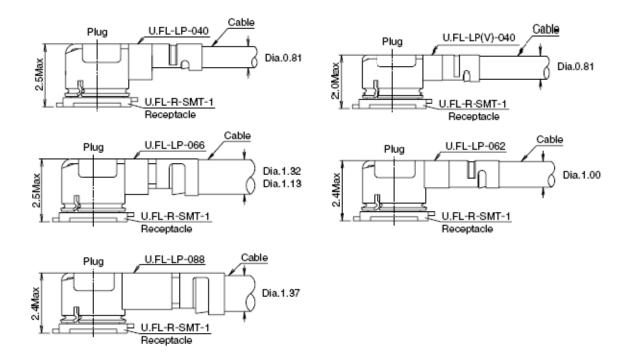


Figure 37: Space Factor of Mated Connector (Unit: mm)

For more details, please visit <u>http://hirose.com</u>.

5 Electrical Characteristics, Radio and Reliability

5.1. Absolute Maximum Ratings

Absolute maximum ratings for power supply and voltage on digital and analog pins of the module are listed in the following table.

Table 38: Absolute Maximum Ratings

Parameter	Min.	Max.	Unit
VBAT_RF/VBAT_BB	-0.3	6.0	V
USB_VBUS	-0.3	5.5	V
Peak Current of VBAT_BB	-	1.5	А
Peak Current of VBAT_RF	-	2.0	А
Voltage at Digital Pins	-0.3	2.3	V
Voltage at ADC0	0	VBAT_BB	V
Voltage at ADC1	0	VBAT_BB	V
Voltage at ADC2	0	VBAT_BB	V

5.2. Power Supply Ratings

Table 39: Power Supply Ratings

Parameter	Description	Conditions	Min.	Тур.	Max.	Unit
VBAT	VBAT_BB and VBAT_RF	The actual input voltages must be kept between the minimum and maximum value.	3.3	3.8	4.3	V
	Voltage drop during burst transmission	Maximum power control level on EGSM900.			400	mV
Ivbat	Peak supply current (during transmission slot)	Maximum power control level on EGSM900.		1.8	2.0/3.0	A
USB_VBUS	USB detection		3.5	5.0	5.25	V

NOTE

The power supply should be able to provide sufficient current up to 2.0 A to the module that only supports LTE network, while 3.0 A at least should be provided for GSM network.

5.3. Operating and Storage Temperatures

The operating and storage temperatures are listed in the following table.

Table 40: Operating and Storage Temperatures

Parameter	Min.	Тур.	Max.	Unit
Operating Temperature Range 7	-35	+25	+75	°C
Extended Temperature Range 8	-40		+85	°C
Storage Temperature Range	-40		+90	°C

5.4. Power Consumption

Table 41: EC200U-CN Current Consumption

Description	Conditions	Тур.	Unit
OFF state	Power down	31	μA
	AT+CFUN=0 (USB disconnected)	1.126	mA
	EGSM900 @ DRX = 2 (USB disconnected)	3.271	mA
	EGSM900 @ DRX = 5 (USB disconnected)	2.637	mA
	EGSM900 @ DRX = 5 (USB suspend)	4.105	mA
	EGSM900 @ DRX = 9 (USB disconnected)	2.448	mA
Sleep state	DCS1800 @ DRX = 2 (USB disconnected)	3.265	mA
	DCS1800 @ DRX = 5 (USB disconnected)	2.637	mA
	DCS1800 @ DRX = 5 (USB suspend)	4.206	mA
	DCS1800 @ DRX = 9 (USB disconnected)	2.457	mA
	LTE-FDD @ PF = 32 (USB disconnected)	2.515	mA
	LTE-FDD @ PF = 64 (USB disconnected)	1.832	mA

⁷ Within the operating temperature range, the module meets 3GPP specifications.

⁸ Within the extended temperature range, the module remains the ability to establish and maintain functions such as voice, SMS, data transmission, etc., without any unrecoverable malfunction. Radio spectrum and radio network are not influenced, while one or more specifications, such as Pout, may exceed the specified tolerances of 3GPP. When the temperature returns to the operating temperature range, the module meets 3GPP specifications again.

	LTE-FDD @ PF = 64 (USB suspend)	3.152	mA
	LTE-FDD @ PF = 128 (USB disconnected)	1.487	mA
	LTE-FDD @ PF = 256 (USB disconnected)	1.314	mA
	LTE-TDD @ PF = 32 (USB disconnected)	2.581	mA
	LTE-TDD @ PF = 64 (USB disconnected)	1.868	mA
	LTE-TDD @ PF = 64 (USB suspend)	3.217	mA
	LTE-TDD @ PF = 128 (USB disconnected)	1.510	mA
	LTE-TDD @ PF = 256 (USB disconnected)	1.329	mA
	EGSM900 @ DRX = 5 (USB disconnected)	21.10	mA
	EGSM900 @ DRX = 5 (USB connected)	29.89	mA
	LTE-FDD @ PF = 64 (USB disconnected)	21.07	mA
Idle state	LTE-FDD @ PF = 64 (USB connected)	29.88	mA
	LTE-TDD @ PF = 64 (USB disconnected)	21.16	mA
	LTE-TDD @ PF = 64 (USB connected)	29.88	mA
	EGSM900 4DL/1UL @ 33.2 dBm	231	mA
	EGSM900 3DL/2UL @ 31.3 dBm	344.7	mA
	EGSM900 2DL/3UL @ 29.2 dBm	395.6	mA
	EGSM900 1DL/4UL @ 28.3 dBm	406.9	mA
GPRS data transfer	DCS1800 4DL/1UL @ 30.1 dBm	156	mA
	DCS1800 3DL/2UL @ 28.5 dBm	213.7	mA
	DCS1800 2DL/3UL @ 26.4 dBm	244.9	mA
	DCS1800 1DL/4UL @ 25.1 dBm	252	mA
	LTE-FDD B1 @ 23.2 dBm	662.1	mA
LTE data transfer	LTE-FDD B3 @ 23.5 dBm	566	mA
	LTE-FDD B5 @ 23.4 dBm	570.9	mA

	LTE-FDD B8 @ 23.1 dBm	545.5	mA
	LTE-TDD B34 @ 23.01 dBm	287.1	mA
	LTE-TDD B38 @ 23.1 dBm	343.9	mA
	LTE-TDD B39 @ 22.95 dBm	294.6	mA
	LTE-TDD B40 @ 23.12 dBm	306.4	mA
	LTE-TDD B41 @ 23.37 dBm	393.3	mA
	EGSM900 PCL = 5 @ 33.27 dBm	250	mA
	EGSM900 PCL = 12 @ 19.42 dBm	92.2	mA
GSM voice call	EGSM900 PCL = 19 @ 6.21 dBm	62.8	mA
	DCS1800 PCL = 0 @ 30.24 dBm	175	mA
	DCS1800 PCL = 7 @ 16.2 dBm	75.4	mA
	DCS1800 PCL = 15 @ 0.87 dBm	57.7	mA

NOTE

The GSM network access technology of EC200U-CN is optional. If the module that you select doesn't support GSM network access technology, there is no corresponding current consumption.

Table 42: EC200U-EU Current Consumption

Description	Conditions	Тур.	Unit
OFF state	Power down	40	μA
	AT+CFUN = 0 (USB disconnected)	1.139	mA
	GSM850 @ DRX = 2 (USB disconnected)	2.078	mA
	GSM850 @ DRX = 5 (USB disconnected)	1.555	mA
Sleep state	GSM850 @ DRX = 5 (USB suspend)	2.739	mA
	GSM850 @ DRX = 9 (USB disconnected)	1.392	mA
	DCS1800 @ DRX = 2 (USB disconnected)	2.085	mA

	DCS1800 @ DRX = 5 (USB disconnected)	1.551	mA
	DCS1800 @ DRX = 5 (USB suspend)	2.778	mA
	DCS1800 @ DRX = 9 (USB disconnected)	1.381	mA
	LTE-FDD @ PF = 32 (USB disconnected)	2.535	mA
	LTE-FDD @ PF = 64 (USB disconnected)	1.848	mA
	LTE-FDD @ PF = 64 (USB suspend)	3.099	mA
	LTE-FDD @ PF = 128 (USB disconnected)	1.490	mA
	LTE-FDD @ PF = 256 (USB disconnected)	1.311	mA
	LTE-TDD @ PF = 32 (USB disconnected)	2.584	mA
	LTE-TDD @ PF = 64 (USB disconnected)	1.871	mA
	LTE-TDD @ PF = 64 (USB suspend)	3.086	mA
	LTE-TDD @ PF = 128 (USB disconnected)	1.503	mA
	EGSM900 @ DRX = 5 (USB disconnected)	13.01	mA
	EGSM900 @ DRX = 5 (USB connected)	28.94	mA
	LTE-FDD @ PF = 64 (USB disconnected)	12.68	mA
Idle state	LTE-FDD @ PF = 64 (USB connected)	27.92	mA
	LTE-TDD @ PF = 64 (USB disconnected)	12.70	mA
	LTE-TDD @ PF = 64 (USB connected)	27.95	mA
	GSM850 4DL/1UL @ 32.89 dBm	254	mA
	GSM850 3DL/2UL @ 30.9 dBm	383	mA
	GSM850 2DL/3UL @ 28.67 dBm	431	mA
GPRS data transfer	GSM850 1DL/4UL @ 26.54 dBm	448	mA
	EGSM900 4DL/1UL @ 32.55 dBm	231	mA
	EGSM900 3DL/2UL @ 31.3 dBm	344.7	mA
	EGSM900 2DL/3UL @ 29.2 dBm	395.6	mA

	EGSM900 1DL/4UL @ 28.3 dBm	406.9	mA
	DCS1800 4DL/1UL @ 30.1 dBm	156	mA
	DCS1800 3DL/2UL @ 28.5 dBm	213.7	mA
	DCS1800 2DL/3UL @ 26.4 dBm	244.9	mA
	DCS1800 1DL/4UL @ 25.1 dBm	252	mA
	PCS1900 4DL/1UL @ 29.93 dBm	153	mA
	PCS1900 3DL/2UL @ 27.99 dBm	219	mA
	PCS1900 2DL/3UL @ 25.94 dBm	249	mA
	PCS1900 1DL/4UL @ 23.87 dBm	261	mA
	LTE-FDD B1 @ 23.4 dBm	607	mA
	LTE-FDD B3 @ 22.96 dBm	508	mA
	LTE-FDD B5 @ 23 dBm	492	mA
	LTE-FDD B7 @ 22.8dBm	709	mA
LTE data transfer	LTE-FDD B8 @ 23.1 dBm	558	mA
LIE data transfer	LTE-FDD B20 @ 23 dBm	576	mA
	LTE-FDD B28 @ 23.3 dBm	586	mA
	LTE-TDD B38 @ 23.1 dBm	320.9	mA
	LTE-TDD B40 @ 23.12 dBm	286	mA
	LTE-TDD B41 @ 23.37 dBm	317	mA
	GSM850 PCL = 5 @ 33 dBm	246	mA
	GSM850 PCL = 12 @ 19.8 dBm	95	mA
	GSM850 PCL = 19 @ 6.7 dBm	64	mA
GSM voice call	EGSM900 PCL = 5 @ 33.27 dBm	250	mA
	EGSM900 PCL = 12 @ 19.42 dBm	92.2	mA
	EGSM900 PCL = 19 @ 6.21 dBm	62.8	mA

DCS1800 PCL = 0 @ 30.24 dBm	175	mA
DCS1800 PCL = 7 @ 16.2 dBm	75.4	mA
DCS1800 PCL = 15 @ 0.87 dBm	57.7	mA
PCS1900 PCL = 0 @ 29.8 dBm	168	mA
PCS1900 PCL = 7 @ 16.6 dBm	78	mA
PCS1900 PCL = 15 @ 0.8 dBm	59	mA

5.5. Tx Power

The following table shows the RF output power of EC200U series module.

Table	43:	EC200U-CN	RF	Output	Power
iasio				output	

Frequency Bands	Max. RF Output Power	Min. RF Output Power
EGSM900	33 dBm ±2 dB	5 dBm ±5 dB
DCS1800	30 dBm ±2 dB	0 dBm ±5 dB
LTE-FDD B1/B3/B5/B8	23 dBm ±2 dB	< -39 dBm
LTE-TDD B34/B38/B39/B40/B41	23 dBm ±2 dB	< -39 dBm

NOTE

The GSM network access technology of EC200U-CN is optional. If the module that you select doesn't support GSM network access technology, there is no corresponding RF output power.

Table 44: EC200U-EU RF Output Power

Frequency Bands	Max. RF Output Power	Min. RF Output Power
GSM850	33 dBm ±2 dB	5 dBm ±5 dB
EGSM900	33 dBm ±2 dB	5 dBm ±5 dB
DCS1800	30 dBm ±2 dB	0 dBm ±5 dB
PCS1900	30 dBm ±2 dB	0 dBm ±5 dB
LTE-FDD B1/B3/B5/B7/B8/B20/B28	23 dBm ±2 dB	< -39 dBm
LTE-TDD B38/B40/B41	23 dBm ±2 dB	< -39 dBm

NOTE

In GPRS 4 slots TX mode, the maximum output power is reduced by 6 dB. The design conforms to the GSM specification as described in *Chapter 13.16* of *3GPP TS 51.010-1*.

5.6. Rx Sensitivity

The following tables show conducted RF receiving sensitivity of EC200U series module.

Table 45: EC200U-CN Conducted RF Receiving Sensitivity

Frequency	Receiving Sensitivity (Typ.)	3GPP	
	Primary		
EGSM900	-109.5 dBm	-102.0 dBm	
DCS1800	-109.5 dBm	-102.0 dBm	
LTE-FDD B1 (10 MHz)	-98.5 dBm	-96.3 dBm	
LTE-FDD B3 (10 MHz)	-99.6 dBm	-93.3 dBm	
LTE-FDD B5 (10 MHz)	-99.2 dBm	-94.3 dBm	
LTE-FDD B8 (10 MHz)	-98.7 dBm	-93.3 dBm	
LTE-TDD B34 (10 MHz)	-99.2 dBm	-96.3 dBm	

LTE-TDD B38 (10 MHz)	-98.8 dBm	-96.3 dBm
LTE-TDD B39 (10 MHz)	-99.5 dBm	-96.3 dBm
LTE-TDD B40 (10 MHz)	-99.4 dBm	-96.3 dBm
LTE-TDD B41 (10 MHz)	-98.9 dBm	-94.3 dBm

NOTE

The GSM network access technology of EC200U-CN is optional. If the module that you select doesn't support GSM network access technology, there is no corresponding RF receiving sensitivity data.

Table 46: EC200U-EU Conducted RF Receiving Sensitivity

Frequency	Receiving Sensitivity (Typ.)	3GPP
Frequency	Primary	JUFF
GSM850	-109.5 dBm	-102.0 dBm
EGSM900	-109.5 dBm	-102.0 dBm
DCS1800	-109 dBm	-102.0 dBm
PCS1900	-109 dBm	-102.0 dBm
LTE-FDD B1 (10 MHz)	-97.8 dBm	-96.3 dBm
LTE-FDD B3 (10 MHz)	-98.5 dBm	-93.3 dBm
LTE-FDD B5 (10 MHz)	-99.2 dBm	-94.3 dBm
LTE-FDD B7 (10 MHz)	-97 dBm	-94.3 dBm
LTE-FDD B8 (10 MHz)	-98.7 dBm	-93.3 dBm
LTE-FDD B20 (10 MHz)	-98 dBm	-93.3 dBm
LTE-FDD B28 (10 MHz)	-98.8 dBm	-94.8 dBm
LTE-TDD B38 (10 MHz)	-98.3 dBm	-96.3 dBm
LTE-TDD B40 (10 MHz)	-98.5 dBm	-96.3 dBm
LTE-TDD B41 (10 MHz)	-98 dBm	-94.3 dBm

5.7. ESD

If the static electricity generated by various ways discharges to the module, the module maybe damaged to a certain extent. Thus, please take proper ESD countermeasures and handling methods. For example, wearing anti-static gloves during the development, production, assembly and testing of the module; adding ESD protective components to the ESD sensitive interfaces and points in the product design.

The following table shows the module electrostatics discharge characteristics.

Tested Interfaces	Contact Discharge	Air Discharge	Unit
VBAT, GND	±5	±10	kV
Antenna Interfaces	±4	±8	kV
Other Interfaces	±0.5	±1	kV

Table 47: Electrostatics Discharge Characteristics (25 °C, 45 % Relative Humidity)

6 Mechanical Information

This chapter describes the mechanical dimensions of the module. All dimensions are measured in millimeter. The tolerances for dimensions without tolerance values are ± 0.2 mm.

6.1. Mechanical Dimensions

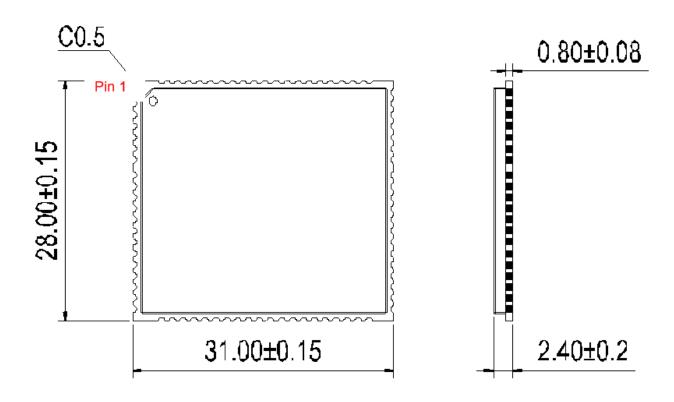
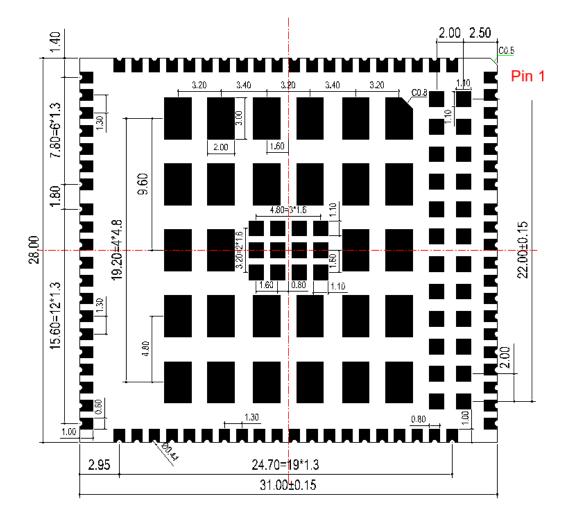



Figure 38: Module Top and Side Dimensions

Figure 39: Module Bottom Dimensions

NOTE

The package warpage level of the module conforms to the JEITA ED-7306 standard.

6.2. Recommended Footprint

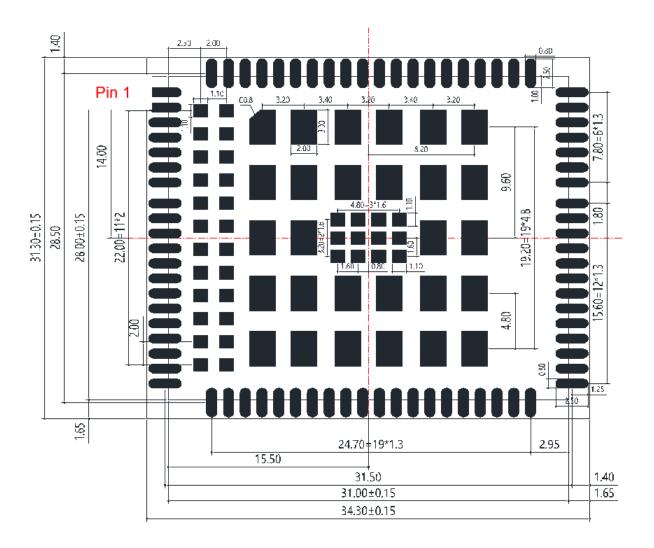


Figure 40: Recommended Footprint (Top View)

NOTE

Keep at least 3 mm between the module and other components on the motherboard to improve soldering quality and maintenance convenience.

6.3. Top and Bottom Views



Figure 41: Top & Bottom View of the Module

NOTE

Images above are for illustration purpose only and may differ from the actual module. For authentic appearance and label, please refer to the module received from Quectel.

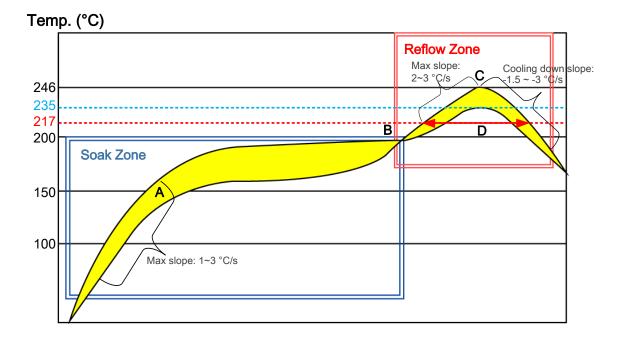
7 Storage, Manufacturing & Packaging

7.1. Storage Conditions

The module is provided with vacuum-sealed packaging. MSL of the module is rated as 3. The storage requirements are shown below.

- 1. Recommended Storage Condition: The temperature should be 23 ±5 °C and the relative humidity should be 35–60 %.
- 2. Storage life (in vacuum-sealed packaging) is 12 months in Recommended Storage Condition.
- 3. The floor life of the module is 168 hours⁹ in a plant where the temperature is 23 ±5 °C and relative humidity is below 60 %. After the vacuum-sealed packaging is removed, the module must be processed in reflow soldering or other high-temperature operations within 168 hours. Otherwise, the module should be stored in an environment where the relative humidity is less than 10 % (e.g. a drying cabinet).
- 4. The module should be pre-baked to avoid blistering, cracks and inner-layer separation in PCB under the following circumstances:
 - The module is not stored in Recommended Storage Condition;
 - Violation of the third requirement above occurs;
 - Vacuum-sealed packaging is broken, or the packaging has been removed for over 24 hours;
 - Before module repairing.
- 5. If needed, the pre-baking should follow the requirements below:
 - The module should be baked for 8 hours at 120 ±5 °C;
 - All modules must be soldered to PCB within 24 hours after the baking, otherwise they should be put in a dry environment such as in a drying oven.

⁹ This floor life is only applicable when the environment conforms to *IPC/JEDEC J-STD-033*. It is recommended to start the solder reflow process within 24 hours after the package is removed if the temperature and moisture do not conform to, or are not sure to conform to *IPC/JEDEC J-STD-033*. And do not remove the packages of tremendous modules if they are not ready for soldering.


NOTE

- 1. To avoid blistering, layer separation and other soldering issues, extended exposure of the module to the air is forbidden.
- 2. Take out the module from the package and put it on high-temperature-resistant fixtures before baking. All modules must be soldered to PCB within 24 hours after the baking, otherwise put them in the drying oven. If shorter baking time is desired, see *IPC/JEDEC J-STD-033* for the baking procedure.
- 3. Pay attention to ESD protection, such as wearing anti-static gloves, when touching the modules.

7.2. Manufacturing and Soldering

Push the squeegee to apply the solder paste on the surface of stencil, thus making the paste fill the stencil openings and then penetrate to the PCB. The force on the squeegee should be adjusted properly so as to produce a clean stencil surface on a single pass. To ensure the module soldering quality, the thickness of stencil for the module is recommended to be 0.18–0.20 mm. For more details, please refer to *document [4]*.

It is suggested that the peak reflow temperature is 235–246 °C, and the absolute maximum reflow temperature is 246 °C. To avoid damage to the module caused by repeated heating, it is strongly recommended that the module should be mounted after reflow soldering for the other side of PCB has been completed. The recommended reflow soldering thermal profile (lead-free reflow soldering) and related parameters are shown below.

Table 48: Recommended Thermal Profile Parameters

Factor	Recommendation
Soak Zone	
Max. slope	1 to 3 °C/sec
Soak time (between A and B: 150 °C and 200 °C)	70 to 120 sec
Reflow Zone	
Max. slope	2 to 3 °C/sec
Reflow time (D: over 217 °C)	40 to 70 sec
Max. temperature	235 °C to 246 °C
Cooling down slope	-1.5 to -3 °C/s
Reflow Cycle	
Max. reflow cycle	1

NOTE

- 1. During manufacturing and soldering, or any other processes that may contact the module directly, NEVER wipe the module's shielding can with organic solvents, such as acetone, ethyl alcohol, isopropyl alcohol, trichloroethylene, etc. Otherwise, the shielding can may become rusted.
- 2. The shielding can for the module is made of Cupro-Nickel base material. It is tested that after 12 hours' Neutral Salt Spray test, the laser engraved label information on the shielding can is still clearly identifiable and the QR code is still readable, although white rust may be found.
- 3. If a conformal coating is necessary for the module, do NOT use any coating material that may chemically react with the PCB or shielding cover, and prevent the coating material from flowing into the module.
- 4. Due to the complexity of the SMT process, please contact Quectel Technical Supports in advance for any situation that you are not sure about, or any process (e.g. selective soldering, ultrasonic soldering) that is not mentioned in *document [4]*.

7.3. Packaging Specifications

The module adopts carrier tape packaging and details are as follow:

7.3.1. Carrier Tape

Dimension details are as follow:

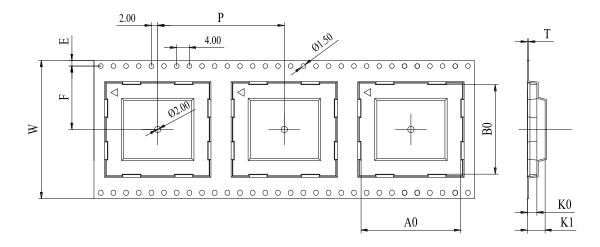
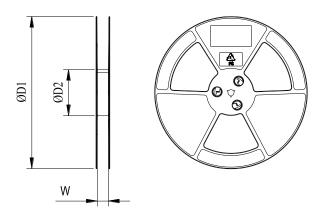
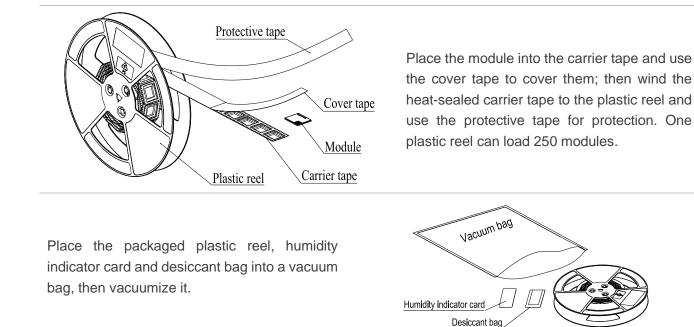


Figure 43: Carrier Tape Dimension Drawing

Table 49: Carrier Tape Dimension Table (Unit: mm)

W	Р	т	A0	B0	K0	K1	F	E
44	40	0.4	31.5	28.5	3.0	5.6	20.2	1.75

7.3.2. Plastic Reel

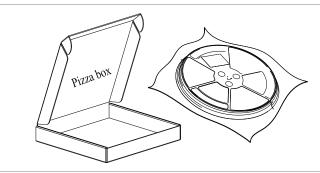

Figure 44: Plastic Reel Dimension Drawing

Table 50: Plastic Reel Dimension Table (Unit: mm)

øD1	øD2	W
330	100	44.5

7.3.3. Packaging Process

Place the vacuum-packed plastic reel into a pizza box.

Put 4 pizza boxes into 1 carton and seal it. One carton can pack 1000 modules.

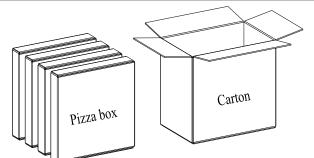


Figure 45: Packaging Process

8 Appendix References

Table 51: Related Documents

Document Name

- [1] Quectel_UMTS<E_EVB_User_Guide
- [2] Quectel_EC200U&EG915U_Series_AT_Commands_Manual
- [3] Quectel_RF_Layout_Application_Note
- [4] Quectel_Module_SMT_User_Guide

Table 52: Terms and Abbreviations

Abbreviation	Description
ADC	Analog-to-Digital Converter
AMR	Adaptive Multi-Rate
bps	Bits Per Second
СНАР	Challenge Handshake Authentication Protocol
CMUX	Connection Multiplexing
CS	Coding Scheme
CTS	Clear to Send
DFOTA	Delta Firmware Upgrade Over-The-Air
DL	Downlink
DMA	Direct Memory Access
DSDS	Dual SIM Dual Standby
DTE	Data Terminal Equipment

DTR	Data Terminal Ready
EFR	Enhanced Full Rate
EGSM	Enhanced GSM
EMI	Electromagnetic Interference
ESD	Electrostatic Discharge
ESR	Equivalent Series Resistance
EVB	Evaluation Board
FDD	Frequency Division Duplex
FR	Full Rate
FTP	File Transfer Protocol
FTPS	FTP-over-SSL
GND	Ground
GSM	Global System for Mobile Communications
HR	Half Rate
HTTP	Hypertext Transfer Protocol
HTTPS	Hypertext Transfer Protocol Secure
LED	Light Emitting Diode
LTE	Long Term Evolution
MCU	Microcontroller Unit/Microprogrammed Control Unit
ME	Mobile Equipment
MMS	Multimedia Messaging Service
MQTT	Message Queuing Telemetry Transport
MSL	Moisture Sensitivity Level
NITZ	Network Identity and Time Zone
NTP	Network Time Protocol

PAP	Password Authentication Protocol
PCB	Printed Circuit Board
PDA	Personal Digital Assistant
PDU	Protocol Data Unit
PF	Paging Frame
POS	Point of Sale
PPP	Point-to-Point Protocol
RF	Radio Frequency
RGB	Red, Green, Blue
SM	Smart Media
SMS	Short Message Service
SMTP	Simple Mail Transfer Protocol
SSL	Secure Sockets Layer
ТСР	Transmission Control Protocol
TDD	Time Division Duplexing
UART	Universal Asynchronous Receiver & Transmitter
UDP	User Datagram Protocol
UL	Uplink
UMTS	Universal Mobile Telecommunications System
URC	Unsolicited Result Code
(U)SIM	(Universal) Subscriber Identity Module
Vmax	Maximum Voltage Value
Vnom	Nominal Voltage Value
Vmin	Minimum Voltage Value
V _{IH} max	Maximum High-level Input Voltage

V _{IH} min	Minimum High-level Input Voltage
V _{IL} max	Maximum Low-level Input Voltage
Vı∟min	Minimum Low-level Input Voltage
V _{OH} max	Maximum High-level Output Voltage
V _{OH} min	Minimum High-level Output Voltage
V _{OL} max	Maximum Low-level Output Voltage
V _{OL} min	Minimum Low-level Output Voltage
VSWR	Voltage Standing Wave Ratio
WCDMA	Wideband Code Division Multiple Access
WLAN	Wireless Local Area Network